MSDH-WATER SUPPLY 2023 JUN 22 AM 8: 14

Certification

Distribution Method I		
Water systems serving 500 - 9,999 must use: Distribution Method I OR Distribution Method II, III, and IV		
Water system serving less than 500 people must use: Distribution Method I OR Distribution Method II, III, and IV OR Distribution Method III and IV	OFFICE USI	E ONLY
Public Water Supply name(s):	7-digit Public Water	Supply ID #(s):
City of Pascagaila	0300006	
Distribution (Methods used to distribute CCR to ou		
XI. CCR directly delivered using one or more method b		
*Provided direct Web address to customer	*Add direct Web address (UR	0.0
☐ Hand delivered	www.city&pasagoub.com	n/ccr
□ Mail paper copy	Example: "The current of	
□ Email	www.waterworld.org/ccrM call (000) 000-0000 f	
□ II. Published the complete CCR in the local	Date(s) published:	п рарен сору .
newspaper.	.,,	
but is available upon request. List method(s) used (examples – newspaper, water bills, newsletter, etc.).	Date(s) notified: Water Bills - 617, 6/14 Location distributed: Water Bills	ł, <i>6/3</i> 1, 6/38
VIV. Post the complete CCR continuously at the	Date: 5/28/2020	
local water office.	Locations posted:	
O'Good Faith Effort" in other public buildings with the water system service area (i.e. City Hall, Public Library, etc.)	See Attached	er e en en
Certification		
This Community public water system confirms it has distributed if and the appropriate notices of availability have been given and the consistent with the compliance monitoring data previously submit Public Water Supply and the requirements of the CCR rule.	hat the information contained in	n its CCR is correct and
Name:	Title:	Date:
Brian Vance Buan Cource	Worker Superintendent	6/22/2023
Submittal		
Email the following required items to water.reports@msdh.ms.gov 1. CCR (Water Quality Report) 2. Certification		
	S#20 4 - 0 - 12 - 139 14V	

Pascagoula CCR 2022

RECEIVED MSDH-WATER SUPPLY

2023 JUN 27 PH 4: 54

Spanish (Espanol)

0300006

Este informe contiene informacion muy importante sobre la calidad de su agua beber. Traduscalo o hable con alguien que lo entienda bien.

Is my water safe?

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA) for the year 2022. This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Our water comes from wells drilled deep into aquifers 300 to 800 feet below the surface. These aquifers are the Pascagoula and the Graham's Ferry formations. The City of Pascagoula uses a Reverse Osmosis/Ozone water Filtration system to purify the well water. If you want to learn more about your water and how the City of Pascagoula works to keep your water safe please contact Brian Vance at (228) 938-6623, Water Superintendent, at our 14th St. offices between 7:00 a.m. and 3:30 p.m. or write us at P.O. Drawer908, Pascagoula, MS, 39568-0908. Our City Council meets on the first and third Tuesday of each month at 6:00 p.m. at City Hall. Information is also available on our website www.CityofPascagoula.com.

Source water assessment and its availability

The source water assessment has also been completed for our public water system to determine the overall susceptibility of its drinking water to determine potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our Public Works Department and is available for viewing at our office upon request.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity:

microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health

The City of Pascagoula routinely monitors for substances and contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2021. As water travels over the land or underground, it may pick up substances or contaminants such as microbes, inorganic and organic chemicals, and radioactive substances. All drinking water, including bottled drinking water, is suspected to contain small amounts of some substances or contaminants. It is important to remember that the presence of these substances or contaminants does not necessarily pose a health risk.

How can I get involved?

Our water resources are the heart of our community, our way of life and our children's future. You can help us in our efforts to provide you with quality water and services by keeping alleys

clear of debris, fences, and other obstructions, by protecting your water meter so that it may be read accurately, by preventing backflows and back siphons, by using pesticides wisely, and by not wasting this precious natural resource.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. City of Pascagoula is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Water Quality Data Table

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table.

Contaminants	MCLG or MRDLG	TT, or	Your		nge High	Sample Date		Typical Source			
Disinfectants & Dis	Disinfectants & Disinfection By-Products										
(There is convincing	(There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants)										

	MCLG	MCL,	Detec		nge			
Contaminants	or MRDLG	TT, or MRDL			High	Sample Date	e Violatio	n Typical Source
Bromate (ppb)	0	10	2.5	2.5	2.5	2014	·No	By-product of drinking water disinfection
Chlorine (as Cl2) (ppm)	4	4	1.1	.35	2.2	2022	No	Water additive used to control microbes
Haloacetic Acids (HAA5) (ppb)	NA	60	6.14	4.48	6.47	2022	No	By-product of drinking water chlorination
TTHMs [Total Trihalomethanes] (ppb)	NA	80	6.46	10.3	24	2022	No	By-product of drinking water disinfection
Inorganic Contamir	ants	71				74.		
Asbestos (MFL)	7	7	NA	NA	NA	2019	No	Decay of asbestos cement water mains; Erosion of natural deposits
Barium (ppm)	2	2	.0094	.0013	.0094	2022	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Fluoride (ppm)	4	4	.446	NA	.446	2022	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Contaminants	MCL	G AL	Your Water	Sample Date	# San Excee	eding	Exceeds AL	Typical Source
Inorganic Contamir	ants							
Copper - action level consumer taps (ppm)		1.3	.2	2022	()	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead - action level at consumer taps (ppb)	0	15	1	2022	()	No	Corrosion of household plumbing systems; Erosion of natural deposits

Additional Contaminants

In an effort to insure the safest water possible the State has required us to monitor some contaminants not required by Federal regulations. Of those contaminants only the ones listed below were found in your water.

Contaminants	State MCL	Your Water	Violation	Explanation and Comment
Gross Alpha, Incl. Radon and Urainium	15 PCI/L	1.3 PCI/l	No	Erosion of Natural Deposits.
Gross Alpha, Incl. Radon and Uranium(Communy)	15 PCI/L	1.2 PCI/L	No	Erosion of Natural Deposits
Gross Alpha. Incl. Radon and Uranium(Criswell)	15 PCI/L	1.7 PCI/L	No	Erosion of Natural Deposits
Sodium(Bayou Cassotte)		59.1 PPm	No	Likely Source of Contamination - Road Salt, Water Treatment Chemicals, Water Softners, and Sewage Effluents.
Sodium(Communy)		21.5 PPm	No	Likely Source of Contamination - Road Salt, Water Treatment Chemicals, Water Softners, and Sewage Effluents.
Sodium(Criswell)		104 ppm	No	Likely Source of Contamination - Road Salt, Water Treatment Chemicals, Water Softners, and Sewage Effluents.

Additional Monitoring

As part of an on-going evaluation program the EPA has required us to monitor some additional contaminants/chemicals. Information collected through the monitoring of these contaminants/chemicals will help to ensure that future decisions on drinking water standards are based on sound science.

		Ra	nge
Name	Reported Level	Low	High
HAA6Br (ug/L)	2.41	0	3.87
HAA9 (ug/L)	2.69	.21	4.26
chloromethane (methyl chloride) (ppb)	.37		.37
chromium (total chromium) (ppb)	.073	.073	.073
chromium-6 (hexavalent chromium) (ppb)	.041	.041	.041
germanium (ug/L)	1	.44	1.3
manganese (ug/L)	9.54	.84	27.1
strontium (ppb)	8.5	1.1	8.5

Unit Des	criptions
Term	Definition

Unit Description	ns .
ug/L	ug/L: Number of micrograms of substance in one liter of water
ppm	ppm: parts per million, or milligrams per liter (mg/L)
ppb	ppb: parts per billion, or micrograms per liter (μg/L)
MFL	MFL: million fibers per liter, used to measure asbestos concentration
NA	NA: not applicable
ND	ND: Not detected
NR	NR: Monitoring not required, but recommended.

mportant Drinking Water Definitions								
Term	Definition							
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.							
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.							
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.							
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.							
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.							
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.							
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.							
MNR	MNR: Monitored Not Regulated							
MPL	MPL: State Assigned Maximum Permissible Level							

For more information please contact:

Contact Name: Brian Vance Address: P.O. Box 908 Pascagoula, MS 39568 Phone: 2289386623

Pascagoula CCR 2022

Spanish (Espanol)

Este informe contiene informacion muy importante sobre la calidad de su agua beber. Traduscalo o hable con alguien que lo entienda bien.

Is my water safe?

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA) for the year 2022. This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Our water comes from wells drilled deep into aquifers 300 to 800 feet below the surface. These aquifers are the Pascagoula and the Graham's Ferry formations. The City of Pascagoula uses a Reverse Osmosis/Ozone water Filtration system to purify the well water. If you want to learn more about your water and how the City of Pascagoula works to keep your water safe please contact Brian Vance at (228) 938-6623, Water Superintendent, at our 14th St. offices between 7:00 a.m. and 3:30 p.m. or write us at P.O. Drawer908, Pascagoula, MS, 39568-0908. Our City Council meets on the first and third Tuesday of each month at 6:00 p.m. at City Hall. Information is also available on our website www.CityofPascagoula.com.

Source water assessment and its availability

The source water assessment has also been completed for our public water system to determine the overall susceptibility of its drinking water to determine potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our Public Works Department and is available for viewing at our office upon request.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity:

microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. The City of Pascagoula routinely monitors for substances and contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2021. As water travels over the land or underground, it may pick up substances or contaminants such as microbes, inorganic and organic chemicals, and radioactive substances. All drinking water, including bottled drinking water, is suspected to contain small amounts of some substances or contaminants. It is important to remember that the presence of these substances or contaminants does not necessarily pose a health risk.

How can I get involved?

Our water resources are the heart of our community, our way of life and our children's future. You can help us in our efforts to provide you with quality water and services by keeping alleys clear of debris, fences, and other obstructions, by protecting your water meter so that it may be read accurately, by preventing backflows and back siphons, by using pesticides wisely, and by not wasting this precious natural resource.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. City of Pascagoula is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Additional Information for Arsenic

While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Water Quality Data Table

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data

presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table.

			Detect	Ra	nge				
Contaminants	MCLG or MRDLG	MCL, TT, or MRDL	In Your Water	Low	High	Sample Date	Violation	Typical Source	
Disinfectants & Disinfe									
(There is convincing evi-	dence that	addition	of a disir	fectan	t is nec	essary fo	r control of	microbial contaminants)	
Bromate (ppb)	0	10	2.5	2.5	2.5	2014	No	By-product of drinking water disinfection	
Chlorine (as Cl2) (ppm)	4	4	2.2	1.24	2.2	2022	No	Water additive used to control microbes	
Haloacetic Acids (HAA5) (ppb)	NA	60	6.14	4.48	6.47	2022	No	By-product of drinking water chlorination	
TTHMs [Total Trihalomethanes] (ppb)	NA	80	6.46	10.3	24	2022	No	By-product of drinking water disinfection	
Inorganic Contaminan	ts								
Antimony (ppb)	6	6	.0005	.0005	.0005	2022	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition.	
Arsenic (ppb)	0	10	.0008	.0005	.0008	2022	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes	
Asbestos (MFL)	7	7	NA	NA	.NA	2019	No	Decay of asbestos cement water mains; Erosion of natural deposits	
Barium (ppm)	2	2	.0094	.0013	.0094	2022	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	
Beryllium (ppb)	4	4	.5	.5	.5	2022	No	Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries	
Cadmium (ppb)	5	5	.5	NA	.5	2022	No	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from	

Contaminants	MCLG	MCL,	Your	Range		J. Assura		
	or MRDLG	TT, or MRDL		Low	High	Sample Date	Violation	Typical Source
								metal refineries; runoff from waste batteries and paints
Chromium (ppb)	100	100	.5	NA	.5	2022	No	Discharge from steel and pulp mills; Erosion of natural deposits
Fluoride (ppm)	4	4	.446	.1	.446	2022	No	Erosion of natural deposit Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Mercury [Inorganic] (ppb)	2	2	.5	NA	.5	2022	No	Erosion of natural deposit Discharge from refineries and factories; Runoff from landfills; Runoff from cropland
Nitrate [measured as Nitrogen] (ppm)	10	10	.08	NA	.08	2022	No	Runoff from fertilizer use Leaching from septic tank sewage; Erosion of natura deposits
Nitrite [measured as Nitrogen] (ppm)	1	1	.02	NA	.02	2022	No	Runoff from fertilizer use Leaching from septic tank sewage; Erosion of natura deposits
Selenium (ppb)	50	50	2.5	NA	2.5	2022	No	Discharge from petroleun and metal refineries; Erosion of natural deposit Discharge from mines
Thallium (ppb)	.5	2	.5	NA	.5	2022	No	Discharge from electronic glass, and Leaching from ore-processing sites; drug factories
Volatile Organic Conta	minants							
1,1,1-Trichloroethane (ppb)	200	200	.5	NA	.5	2022	No	Discharge from metal degreasing sites and other factories
1,1,2-Trichloroethane (ppb)	3	5	.5	NA	.5	2022	No	Discharge from industrial chemical factories
1,1-Dichloroethylene (ppb)	7	7	.5	NA	.5	2022	No	Discharge from industrial chemical factories
1,2,4-Trichlorobenzene (ppb)	70	70	.5	NA	.5	2022	No	Discharge from textile- finishing factories
1,2-Dichloroethane (ppb)	0	5	.5	NA	.5	2022	No	Discharge from industrial chemical factories

			Detect	Ra	nge			
Contaminants	or MRDLG	MCL, TT, or MRDL	In Your Water	Low	High	Sample Date	Violation	Typical Source
1,2-Dichloropropane (ppb)	0	5	.5	NA	.5	2022	No	Discharge from industrial chemical factories
Benzene (ppb)	0	5	.5	NA	.5	2022	No	Discharge from factories; Leaching from gas storage tanks and landfills
Carbon Tetrachloride (ppb)	0	5	.5	NA	.5	2022	No	Discharge from chemical plants and other industrial activities
Chlorobenzene (monochlorobenzene) (ppb)	100	100	.5	NA	.5	2022	No	Discharge from chemical and agricultural chemical factories
Dichloromethane (ppb)	0	5	.5	NA	.5	2022	No	Discharge from pharmaceutical and chemical factories
Ethylbenzene (ppb)	700	700	.5	NA	.5	2022	No	Discharge from petroleum refineries
Styrene (ppb)	100	100	.5	NA	.5	2022	No	Discharge from rubber and plastic factories; Leaching from landfills
Tetrachloroethylene (ppb)	0	5	.5	NA	.5	2022	No	Discharge from factories and dry cleaners
Toluene (ppm)	1	1	.0005	NA	.0005	2022	No	Discharge from petroleum factories
Trichloroethylene (ppb)	0	5	.5	NA	.5	2022	No	Discharge from metal degreasing sites and other factories
Vinyl Chloride (ppb)	0	2	.5	NA	.5	2022	No	Leaching from PVC piping; Discharge from plastics factories
Xylenes (ppm)	10	10	.0005	NA	.5	2022	No	Discharge from petroleum factories; Discharge from chemical factories
cis-1,2- Dichloroethylene (ppb)	70	70	.5	NA	.5	2022	No	Discharge from industrial chemical factories
o-Dichlorobenzene (ppb)	600	600	.5	NA	.5	2022	No	Discharge from industrial chemical factories
p-Dichlorobenzene (ppb)	75	75	.5	NA	.5	2022	No	Discharge from industrial chemical factories
trans-1,2- Dichloroethylene (ppb)	100	100	.5	NA	.5	2022	No	Discharge from industrial chemical factories

Contaminants	MCLG	AL		Sample Date	# Samples Exceeding AL	Exceeds AL	Typical Source
Inorganic Contaminant	S		Walles av				
Copper - action level at consumer taps (ppm)	1.3	1.3	.2	2022	0	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead - action level at consumer taps (ppb)	0	15	1	2022	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

Additional Contaminants

In an effort to insure the safest water possible the State has required us to monitor some contaminants not required by Federal regulations. Of those contaminants only the ones listed below were found in your water.

Contaminants	State MCL	Your Water	Violation	Explanation and Comment
Gross Alpha, Incl. Radon and Urainium	15 PCI/L	1.3 PCI/I	No	Erosion of Natural Deposits.
Gross Alpha, Incl. Radon and Uranium(Communy)	15 PCI/L	1.2 PCI/L	No	Erosion of Natural Deposits
Gross Alpha. Incl. Radon and Uranium(Criswell)	15 PCI/L	1.7 PCI/L	No	Erosion of Natural Deposits
Sodium(Bayou Cassotte)		59.1 PPm	No	Likely Source of Contamination - Road Salt, Water Treatment Chemicals, Water Softners, and Sewage Effluents.
Sodium(Communy)		21.5 PPm	No	Likely Source of Contamination - Road Salt, Water Treatment Chemicals, Water Softners, and Sewage Effluents.
Sodium(Criswell)		104 ppm	No	Likely Source of Contamination - Road Salt, Water Treatment Chemicals, Water Softners, and Sewage Effluents.

Additional Monitoring

As part of an on-going evaluation program the EPA has required us to monitor some additional contaminants/chemicals. Information collected through the monitoring of these contaminants/chemicals will help to ensure that future decisions on drinking water standards are based on sound science.

i

		Range	
Name	Reported Level	Low	High
HAA6Br (ug/L)	2.41	0	3.87
HAA9 (ug/L)	2.69	.21	4.26
chloromethane (methyl chloride) (ppb)	.37		.37
chromium (total chromium) (ppb)	.073	.073	.073
chromium-6 (hexavalent chromium) (ppb)	.041	.041	.041
germanium (ug/L)	1	.44	1.3
manganese (ug/L)	9.54	.84	27.1
strontium (ppb)	8.5	1.1	8.5

Init Descriptions					
Term	Definition				
ug/L	ug/L: Number of micrograms of substance in one liter of water				
ppin	ppm: parts per million, or milligrams per liter (mg/L)				
ppb	ppb: parts per billion, or micrograms per liter (µg/L)				
MFL	MFL: million fibers per liter, used to measure asbestos concentration				
NA	NA: not applicable				
ND	ND: Not detected				
NR	NR: Monitoring not required, but recommended.				

Important Drin	Important Drinking Water Definitions					
Term	Definition					
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.					
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.					
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.					
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.					
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.					
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.					
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.					

Important Dr	inking Water Definitions
MNR	MNR: Monitored Not Regulated
MPL	MPL: State Assigned Maximum Permissible Level

TT Violation	Explanation	Length	Health Effects Language	Explanation and Comment
Surface water treatment rule filtration and disinfection violations	Routine Chlorine Monitoring(DPB), Minor	10/1/2019 - 12/31/2019	Inadequately treated water may contain disease-causing organisms. These organisms include bacteria, viruses, and parasites, which can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.	Public Notice

For more information please contact:

Contact Name: Brian Vance

Address: P.O. Box 908 Pascagoula, MS 39568 Phone: 2289386623

CCR Locations

- 1. City Hall
- 2. Public Utilities
- 3. Code Enforcement
- 4. Public Works
- 5. Communy Water Plant
- 6. B-C Water Plant
- 7. Criswell Water Plant

Pascagoula Utilities P.O. BOX 908 Pascagoula, MS 39568-0908 RETURN SERVICE REQUESTED

Telephone: (228) 938-6633

PLEASE DO NOT PAY THIS BILL, PAYMENT WILL BE DRAFTED FROM ACCT

BUEHL AMBER D 2903 CRISWELL AVE PASCAGOULA, MS 39567-1146

Account #	Bill Number		
0011194	541843		
Bill Date	Bill Date Due Date		
06/07/2023	\$94.13		
Amoui	\$103.55		
Please donate to hel	p Pascagoula's elderly:		
	To Be Drafted		

լմիկոլոկդիկոլոյին|||իսնիկիկիկիկիկիկումբորկին

Pascagoula Utilities P.O. BOX 908 Pascagoula, MS 39568-0908

00006042023000541843900000094136

Please check box if above address is incorrect. Indicate change(s) on reverse side.

Detach and return top stub with your payment

Pascagoula Utilities P.O. BOX 908 Pascagoula, MS 39568-0908 la Telephone: (228) 938-6633

PLEASE DO NOT PAY THIS BILL, PAYMENT WILL BE DRAFTED FROM ACCT

UTILITY BILL Customer Copy

Keep this portion for your records

Page 1 of 1

Customer Name			Service Address		
	BUEHL AMB	ER D	2903 CRIS	WELL AVE	
Bill Number	Bill Date	Account Number - Cus	stomer Number	Due Date	
541843	06/07/2023	0011194000 -	06/22/2023		

Description	Previous Read Date	Current Read Date	Previous Reading	Current Reading	Usage	Charge
WATER 5/8"	05/01/2023	05/31/2023	6003	6031	28	\$18.96
SEWER USE						\$11.00
SEWER DEM						\$29.39
GARBAGE		821/21/22/19	A LEVEL COMMUNICATION			\$29.83
CONTAINER						\$4.95

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER IS AVAILABLE IN THE 2022 CONSUMER CONFIDENCE REPORT AT WWW.CITYOFPASCAGOULA.COM/CCR YOU MAY REQUEST A HARD COPY BY CALLING 228-938-6623ENT ACCOUNTS

IF ANY PORTION OF THIS BILL CONTAINS A BALANCE FROM PREVIOUS MONTHS, YOUR WATER SERVICE MAY BE CUT OFF WITHOUT ANY FURTHER NOTIFICATION FROM THIS

IF YOUR SERVICE IS CUT OFF FOR NONPAYMENT, THE UNPAID BALANCE MUST BE PAID IN FULL TO RECONNECT. A TRIP CHARGE OF \$65.00 WILL BE ADDED TO YOUR NEXT UTILITY BILL. ANY TRIP MADE AFTER 4:30 WILL RESULT IN AN OVERTIME FEE OF \$107.00 TO BE BILLED ON YOUR NEXT BILLING. TRIP CHARGES OF \$50.00 INCLUDE BUT ARE NOT LIMITED TO METER REREADS. TURN ON/TURN OFF WATER, METER LOCATE. THESE FEES ARE CURRENT AS OF OCTOBER 01, 2022. THEY ARE SUBJECT TO CHANGE WITHOUT FURTHER NOTICE.

\$0.00 TAX (7%)

For all correspondence or payment in person: Pascagoula Utilities 622 Deimas Avenue Pascagoula, MS 39567 Telephone: (228) 938-6633

Office Hours: 8am to 5pm Monday through Friday Except on Holldays

TO PAY YOUR BILL ONLINE, VISIT US AT CITYOFPASCAGOULA.COM A FEE DOES APPLY TO DISCONNECT YOUR SERVICE, CALL 228-936-6633. FAILURE TO DO SO MAY RESULT IN ADDITIONAL FEES. LATE FEES ARE 10% OF THE CURRENT AMOUNT DUE. FOR SEWER ASSISTANCE AND WATER QUALITY QUESTIONS, CALL PUBLIC WORKS 228-938-6623. FOR DEBRIS PICK UP AND GARBAGE QUESTIONS, CALL WASTEPRO 228-828-5393.

Total current Billing: \$94.13 • DUE DATE APPLIES TO THE CURRENT MONTHLY CHARGES ONLY.
• ANY PREVIOUS BALANCES MAY RESULT IN AN INTERRUPTION OF SERVICE.
• FAILURE TO RECEIVE A BILL DOES NOT RELEASE CUSTOMER FROM AN OBLIGATION TO PAY.
• TAMPERING WITH THE METER OR METER LOCK WILL RESULT IN A FEE UP TO \$1,000.00 \$0.00 Previous Balance: **Total Amount Due:** \$94.13 \$103.55

If paying after Due Date Add Late Fee Amount