2021 CERTIFICATION RECEIVED

Consumer Confidence Report (CCR)

Midway	Community	Water	association
	PRINT Public Water	System Name	

0820010, 0820027, 0820028

List PWS ID #s for all Community Water Systems included in this CCR

CCR DISTRIBUTION (Check all boxes that apply)	
INDIRECT DELIVERY METHODS (Attach copy of publication, water bill or other)	DATE ISSUED
Advertisement in local paper (Attach copy of advertisement)	10/8/2022
□ On water bill (Attach copy of bill)	0101
□ Email message (Email the message to the address below)	
□ Other (Describe:	
DIRECT DELIVERY METHOD (Attach copy of publication, water bill or other)	DATE ISSUED
□ Distributed via U.S. Postal Service	
□ Distributed via E-mail as a URL (Provide direct URL):	
□ Distributed via Email as an attachment	
□ Distributed via Email as text within the body of email message	
Published in local newspaper (attach copy of published CCR or proof of publication)	10/8/22
Posted in public places (attach list of locations or list here)	4/0/00
Posted online at the following address (Provide direct URL):	e 6 /8/ 2022
CERTIFICATION	
I hereby certify that the Consumer Confidence Report (CCR) has been prepared and distributed to its custome the appropriate distribution method(s) based on population served. Furthermore, I certify that the information is correct and consistent with the water quality monitoring data for sampling performed and fulfills all CCR required for Federal Regulations (CFR) Title 40, Part 141.151 – 155.	contained in the report
Condy M. Shipp Bookkeeper Title	6 8 2022 Date
SUBMISSION OPTIONS (Select one method ONLY)	
You must email or mail a copy of the CCR, Certification, and associated proof of delive	ery method(s) to

the MSDH, Bureau of Public Water Supply.

Email: water.reports@msdh.ms.gov

Mail: (U.S. Postal Service) MSDH, Bureau of Public Water Supply P.O. Box 1700 Jackson, MS 39215

2021 Annual Drinking Water Quality Report Midway Community Water Association PWS#: 0820010, 0820027 & 0820028 June 2022

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you always the auglity water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of brinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Meridian Upper Wilcox Aquifer.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identified potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the Midway Community Water Association have received lower to moderate susceptibility rankings to contamination.

If you have any questions about this report or concerning your water utility, please contact Cindy M. Shipp at 662.571.0704. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the first Tuesday of each month at 7:00 PM at the Midway County Barn.

We routinely monitor for contaminants in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that were detected during the period of January 1st to December 31st, 2021. In cases where monitoring wasn't required in 2021, the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. It's important to remember that the presence of these contaminants does not necessarily indicate that the water poses a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal"(MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary to control microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

PWS ID#	08200	10	T]	EST RESUL	TS			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure -ment	MCLG	MCL	Likely Source of Contamination
Inorganic	Contar	ninants			· · · · · · · · · · · · · · · · · · ·	·		
10. Barium	N	2019*	.0121	No Range	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natura deposits
13. Chromium	N	2019*	1.3	No Range	ppb	100	100	Discharge from steel and pulp mills; erosion of natural deposits

14. Copper	N	2019/21	6	0	ppm	1.3		Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives		
16. Fluoride	N	2019*	.38	No Range	ppm	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories		
17. Lead	N	2019/21	2	0	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits		
Sodium	N	2019*	190000	No Range	ppb	0	0	Road Salt, Water Treatment Chemicals, Water Softeners and Sewage Effluents.		
Disinfection	n By	-Product	S							
81. HAA5	N	2021	39	13.3 – 48.9	ppb	0	60	By-Product of drinking water disinfection.		
82. TTHM [Total trihalomethanes]	N	2021	45	50 – 57.5	ppb	0	80	By-product of drinking water chlorination.		
Chlorine	N	2021	1.7	1 -3	ppm	0	MRDL = 4	Water additive used to control microbes		

PWS ID#:	082002	27	\mathbf{T}	EST RESUL	TS				
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure -ment	MCLG	MCL	Likely Source of Contamination	
Inorganic	Contar	ninants							
10. Barium	N	2019*	.0076	No Range	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natura deposits	
13. Chromium	N	2019*	3.1	No Range	ppb	100	100	Discharge from steel and pulp mills; erosion of natural deposits	
14. Copper	N	2019/21	.4	0	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives	
16. Fluoride	N	2019*	.317	No Range	ppm	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories	
17. Lead	N	2019/21	3	0	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits	
Sodium	N	2019*	150000	No Range	ppb	NONE	NONE	Road Salt, Water Treatment Chemic Water Softeners and Sewage Efflue	
Disinfectio	n By-P	roducts	5					9.	
81. HAA5	Y	2021	96	58.9 – 95.5	ppb	0	6	By-Product of drinking water disinfection.	
82. TTHM [Total trihalomethanes]	N	2021	70	48.7 – 69.5	ppb	0	8	By-product of drinking water chlorination.	
Chlorine	N	2021	1.7	.8 -3.60	ppm	0	MRDL =	Water additive used to control microbes	

PWS ID#	: 082002	28	T]	EST RESUL	TS			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure -ment	MCLG	MCL	Likely Source of Contamination
Inorganic	Contar	ninants						
10. Barium	N	2019*	.0074	No Range	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natura deposits
13. Chromium	N	2019*	4.3	No Range	ppb	100	100	Discharge from steel and pulp mills; erosion of natural deposits
14. Copper	N	2018/20*	.5	0	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
16. Fluoride	N	2019*	.324	No Range	ppm	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories

17. Lead	N	2018/20*	2	0	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
Sodium	N	2019*	150000	No Range	ppb	NONE	NONE	Road Salt, Water Treatment Chemicals, Water Softeners and Sewage Effluents.
Disinfectio	n By	-Product	S					
81. HAA5	Υ	2021	62	24 - 84	ppb	0	61	By-Product of drinking water disinfection.
82. TTHM [Total trihalomethanes]	N	2021	67	40 – 98.1	ppb	0	80	By-product of drinking water chlorination.
Chlorine	N	2021	1.9	7-3.6	ppm	0	MRDL = 4	Water additive used to control microbes

^{*} Most recent sample. No sample required for 2021.

Disinfection By-Products:

Our system # 820027 received a MCL violation for the Haloacetic Acids (HAA5) exceeded the Maximum Contaminant Level for the third quarter of 2021. Our system # 820028 received a MCL violation for the Haloacetic Acids (HAA5) exceeded the Maximum Contaminant Level for the fourth quarter of 2021. On 3/30/2021 this public water system (# 280010) was required by the MS State Department of Health, Bureau of Public Water supply to participate in an Administrative Hearing due to violations of the Disinfection By-Products Rule.

We are required to monitor your drinking water for specific contaminants on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. On system # 820028 our system failed to collect the required sample for chlorine. We were required to collect 1 sample in June and collected 0. The required sample has since been taken that shows we are meeting drinking water standards.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our water system is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing. Please contact 601.576.7582 if you wish to have your water tested.

Significant Deficiencies System # 820027

Monitoring and Reporting of Compliance Data Violations:

During a sanitary survey conducted on 11/02/2021, the Mississippi State Department of Health cited the following significant deficiency(s):

Capacity and Design of Storage Tanks

<u>Corrective Actions</u>: The system is scheduled to complete corrective actions by 3/27/2023 using a compliance plan or are within the initial 120 days minimum.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or manmade. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1.800.426.4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline 1.800.426.4791.

The Midway Community Water Association works around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

⁽⁸¹⁾ Haloacetic Acids (HAA5). Some people who drink water containing bromate in excess of the MCL over many years may have an increased risk of cancer (82) Total Trihalomethanes (TTHMs). Some people who drink water containing Trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

PWS#: 0820010, 0820027 & 0820028 2021 Annual Drinking Water Midway Community Water Association Quality Report June 2022

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of dinking water. We want you to understand the efforts we make to continually improve the water treatment process and profed our water resources. We are committed to ensuring the quality of your water source is from wells drawing from the Meridian Upper Wilcox Aquifer.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identified potential sources of contamination. A report contaming detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the Midway Community Water Association have received lower to moderate susceptibility rankings to contamination.

If you have any questions about this report or concerning your water utility, please contect Cindy M. Shipp at 662.571.0704. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the first Tuesday of each month at 7:00 PM at the Midway County Barn.

We routinely monitor for contaminants in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants have detected during the period of January 14 to December 314, 2021. In cases where monitoring water contaminants from the most insert results. As welfer trivels over the surface of land or underground, it dissolves naturally occurring ministria and, in some cases, redioactive materials and can pick up substances or contaminants from the presence of animals of nominants from the presence septic systems, agricultural investor operations, and while; inorganic contaminants, such as state and materials, which as well and gas production, mining, or settled from urban scornwater mond, industrial, or domestic wastewater discharges, oil and gas production, mining, or residential uses, organic chamicals, which are ob-production, mining, or residential uses, organic chamicals contaminants, including symbolic organic chamicals, which are by-production, mining, or residential uses, organic chamicals contaminants, including symbolic and widelite organic chamicals, which are by-production, and can also come from gas stations and sopile systems; radioactive contaminants, which can be prescribes egulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, may be reasonably expected to contain at least small amounts of some contaminants of these contaminants does not necessarily indicate that the water possa a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLQs as feasible using the best available freetment technology.

Maximum Contaminant Level Goal (MGLG) - The "Goal"(MCLG) is the level of a contaminant in drinking water balow which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing avidence that addition of a disinfectant is necessary to control microbial contaminants Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant balow which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000. Parts per billon (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

THEYAZOO HERALD, WEDNESDAY, JUNE 8, 2022, 9

N 2019" 150000 No Range ppb NONE N	17. Lead	2	2018/20*	2	0	qdd	0	0 AL=15	AL=15 Corrosion of household atumbing
	Sodium	2	20100	450000	-	1			systems, erosion of natural deposits
Walter Softens Walt			2010	00000	No Range	qdd	NONE	NONE	Road Salt, Water Treatment Chemical
Y 2021 62 24.34 ppb 0 60 By-Product distribution N 2021 67 40-98.1 ppb 0 60 By-Product distribution Interval N 2021 47-36 ppm 0 MRDL = 4 Walter additional distribution	Disinfection	In By-	Products		57 7 7 7				water Softeners and Sewage Effluents
N 2021 67 40 - 98.1 ppb 0 BVProduct	B1. HAAS	7	2021	62	24. 04	- Trans	-		
N 2021 67 40-98.1 ppb 0 80 Bytroducing annes] N 2021 1.9 7-3.6 ppm 0 MRDL=4 Walter additional control of the co	The state of the s					nda		09	By-Product of drinking water
innes) N 2021 1.9 7-36 ppm 0 MRDL=4 Water additional control of the control of th	SZ TTHM	2	2024	R7	400 00 4	1	-		distriection.
N 2021 1.9 .7-3.6 ppm	Total rihalomathanes)				40 - 98 1	gdd	0	80	PRO
mdd 7-3.6 ppm	Chlorina	Z	2004	0.0		-		The second second	
			ZOZ I	6.1	.7-3.6	шфф	0	MRDL = 4	Water additive used to control

Distriptention By-Province:

(82) Telescence Acide (HAAA), Some people who drink water containing bromate in excess of the MCL over many years may have an increased rink of emocra (R2) Testal Triansloneschares (THMAS) Some people who drink water containing Triansloneschares in the access of the MCL over many years may experience problem with their liver, kickneys, or central nerveus systems, and may have an increased risk of getting cancer.

Our system# 820027 received a MCL violation for the Haloacetic Acids (HAAS) exceeded the Maximum Contaminant Level for the third quarter of 2021. Our system # 820028 received a MCL violation for the Hatoacetic Acids (HAAS) exceeded the Maximum Confaminant Level for the fourth quarter of 2021. On 3/30/2021 this public water system (# 280010) was required by the MS State Department of Health, Bureau of Public Water supply to participate in an Administrative Hearth, Bureau of Public Water supply to participate in an Administrative Hearth guie to violations of the Distribution By-Products Rule,

We are required to monitor your chinking water for specific contaminants on a monthly basis. Results of regular monitoring are an indicator of wholes or not our chinking water meets health standards. On system # 820028 our system failed to collect the required sample for chlorins. We were required to collect 1 sample in June and collected 0. The required sample has since been taken that shows we are meeting drinking water standards.

If present, elevated levels of lead can cause serious health problems, especially for pregnent women and young children. Lead in dishking water is primarily from materials and components essociated with service lines and home plumbing. Our water system is providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been eithing for service hours, you can minimize the polibridis for feed exposure by flushing your tap for 30 seconds to 2 tested. Information on lead in drinking or cooking, If you are concerned about lead in your water, you may wish to have your water brinking water, testing methods, and steps you can take to minimize exposure is available from the Sate Drinking Water Holling water, testing methods, and steps you can take to minimize exposure is available from the Sate Orinking Water Holling Plasse contact 601,576,782 if you wish to have your water tested.

Significant Deficiencies System # 820027
Monitoring and Reporting of Compilance Data Violations:

During a sanitary survey conducted on 1/102/2021, the Mississippi State Department of Health cited the following algalicant

deficiency(s):
Capachy and Design of Storage Tanks
Capachy and Design of Storage Tanks
Capachy and Design of Storage Tanks
Carective Actions: The system is scheduled to complete corrective ections by 3/27/2023 using a compliance plan or are within the initial 120 days minimum.

All sources of dirthing water are subject to potential contamination by substances that are naturally occurring or manmade. These substances can be microbes, increding bottled water, may rescorably be expected to contain at least and amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Holline at 1,800.426.4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HVAIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidism and other microbiological contaminants are available from the Safe Drinking Water Holline 1.800.426.4791.

The Midway Community Water Association works around the clock to provide top quality water to every tap. We ask customers help us protect our water sources, which are the heart of our community, our way of fife and our children's future.

deposits Discharge from steel and pulp mills; erosion of natural deposits 13 Chromlum N qdd No Range 1,3 2018. 100 100 Discharge of dilling wastes; discharge from metal refurel muna8 01 1210. urdd No Range Inorganic Contaminants Exceeding

e Fluoride	N	2019*	317	Ио Капде	wdd	Þ	*	Erosion of natural deposits; water additive which promotes strong leeth; discharge from fertilizer and aluminum
4 Copper	N	2019/21	₽"	0	นıdd	£.1	£ r=T∀	Corrosion of household plumbing systems; ergeion of restural depositic leaching from wood preservatives
3. Chromlum	N	S019*	3.1	No Range	qdd	100	100	Discharge from steel and pulp mills; erosion of natural deposits
muńsB.0	N	S018.	9700.	No Range	шdd	3	7	Discharge of drilling wastes, discharge of milling wastes, arcaion of natura from morals refinences, arcaion of natura
norganic	Contai	einants	-0 1				3.00	
1กอกเกเรเถด	nohaloiV N\Y	Date Collected	Level Defected	Range of Detects Range of Detects	JinU enusseM Inem-	wcre	WCL	Likely Source of Contamination
:#@ SM	00280	L7	T	EST RESUL		0.01	1011	noticeimetro? to come? viol: (
7-1				1		1		шусторея
eninoln	N	2021	Z'I	€- 1	шиа	0	MRDL = 4	
MHTT (ola) halomethanes)	N	2021	57	S_72 - 02	gdd	0	08	By-product of drinking water chlorination,
SAAH .1	N	2021	36	13.3 – 46.9	qdd	0	09	dininfection.
	I-ya n	roducts				15	BATTAN.	
oisinfectio						1	1	Water Softeners and Sewage Efficents
mulbe otto91misi(N	\$040.	190000	egneA oV	pdd	0		
ſ	N	2019/21	180000	оби е <u>Р</u> о М	qdd qdd	0	0	
шпірс					- (4-5	181	O ST=15	systems, erosion of natural deposits Road Sait, Water Treatment Chemicals,

Englon of natural deposits, water additive which promotes and aluminum decharge from fertilizer and aluminum (notoles).	t	þ	wdd	No Range	324	.S010z	N	abhould at
Corrosion of household plumbing systems; erosion of natural deposits leaching from wood preservatives	€"=1∀	13	mqq	0	g*	2018/20.	N	14. Copper
Discharge from sleet and pulp mills; erozion of natural deposits	100	001	qdd	No Range	£ν	S018.	N	13. Chromium
from metal refineries, erosion of matural deposits	z	2	wdd	No Range	\$Z00	Z010*	N	muinse "Of
enterioring of dilling and state of the	10				Salo.	einants	Contar	Inorganic
Likely Source of Contamination	WCL	MCLG	Unll Measure Insm-	Range of Detects or # of Samples Exceeding MCL/ACL	Level	Oate Collected	noltsloiV WY	Contaminant
politeologistacy to expuss viewil a	1 1014	0.1511		EST RESUL	LL	8	200280	PWS ID#:
Water addilive used to control microbes	MRDL = 4	0	шdd	09.5 - 3.	Z'L	2021	N	Ohlotine

qdd

qdd

qdd

qdd

0

0

NONE

NONE

3.68 - T.8h

9'96 - 6'89

No Range

04

95

160000

2021

2021

5010.

2019/21

Disinfection By-Products

N

60 By-Product of dinking water diamfection By-product of dinking water chlorination.

AL=15

Alena are are are are seen Efficients are seen of natural deposits systems, are seen of natural deposits. Road Sait, Water Sollement Chemicals.

Water Sollemen and Sewage Effluents.

A U

ne ነ()6 SDAY, JUNE 8, 2022, 9 Lof drinking water of drinking water used to control I nisk of cancer penence problems avei for the third in Contaminant Department of oducts Rule. ring are an e required eken that

MHTT .28 [Total

2AAH .18

anibos

17, Lead