

2020 CERTIFICATION

Consumer Confidence Report (CCR)

City of Flowood

Public Water System Name

0610044 and 0610075

List PWS ID #s for all Community Water Systems included in this CCR

The Federal Safe Drinking Water Act (SDWA) requires each Community Public Water System (PWS) to develop and distribute a Consumer Confidence Report (CCR) to its customers each year. Depending on the population served by the PWS, this CCR must be mailed or delivered to the customers, published in a newspaper of local circulation, or provided to the customers upon request. Make sure you follow the proper procedures when distributing the CCR.

procedures when distributing the CCR.										
CCR DISTRIBUTION	(Check all boxes that apply.)									
INDIRECT DELIVERY METHODS (Attach copy of publication,	Water bill or other)		B)ATIE ISSIDIED							
☑ Advertisement in local paper (Attach copy of advertisement)			May 26, 2021							
□ On water bills (Attach copy of bill)										
□ Email message (Email the message to the address below)										
□ Other										
DIRECT DELIVERY METHOD (Attach copy of publication, water	er bill er offnen)		DATEISSUED							
☑ Distributed via U. S. Postal Mail			June 11, 2021							
□ Distributed via E-Mail as a URL (Provide Direct URL):										
□ Distributed via E-Mail as an attachment										
$\hfill\Box$ Distributed via E-Mail as text within the body of email messag	е									
☑ Published in local newspaper (attach copy of published CCR or proof of publication) M										
□ Posted in public places (attach list of locations)										
□ Posted online at the following address (Provide Direct URL):										
I hereby certify that the CCR has been distributed to the custo above and that I used distribution methods allowed by the SDV and correct and is consistent with the water quality monitoring Water Supply.	VA. I further certify that the infor	mation include	ed in this CCR is true							
SUBMISSION OPTIONS	(Select one method ONLY)									
You must email, fax (not preferred), or mail a	a copy of the CCR and Certifica	ition to the M	SDH.							
Mail: (U.S. Postal Service) MSDH, Bureau of Public Water Supply P.O. Box 1700	Email: <u>water.reports@msdh.</u> Fax: (601) 576-7800		REFERRED)							

Jackson, MS 39215

2020 Annual Drinking Water Quality Report City of Flowood PWS#: 0610044 & 0610075 May 2021

2021 MAY 19 AM 5: 10

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Cockfield Formation and Sparta Sand Aquifer.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identified potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the City of Flowood have received lower to moderate susceptibility rankings to contamination.

If you have any questions about this report or concerning your water utility, please contact Steve Jenkins at 601.939.4243. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the first and third Monday of each month at 6:30 PM at the Flowood City Hall located at 2101 Airport Road, Flowood, MS.

We routinely monitor for contaminants in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that were detected during the period of January 1st to December 31st, 2020. In cases where monitoring wasn't required in 2020, the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. It's important to remember that the presence of these contaminants does not necessarily indicate that the water poses a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary to control microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water,

PWS ID#	001002	+4		TEST RESU	7L19			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure -ment	MCLG	MCL	Likely Source of Contamination
Inorganic	Contai	ninants						
10. Barium	N	2019*	.0065	.00580065	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
13. Chromium	N	2019*	1.6	1.2 – 1.6	ppb	100	100	Discharge from steel and pulp mills; erosion of natural deposits
14. Copper	N	2017/19*	.7	0	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
16. Fluoride	N	2019*	.892	.833892	ppm	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories

17. Lead	N	2017/19*	1	0	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
Sodium	N	2019*	110000	No Range	ppb	0	0	Road Salt, Water Treatment Chemicals, Water Softeners and Sewage Effluents.
Disinfectio	n By	-Product	S					
81. HAA5	N	2020	6	5 - 6	ppb	0	60	By-Product of drinking water disinfection.
82. TTHM [Total trihalomethanes]	N	2020	2.53	No Range	ppb	0	80	By-product of drinking water chlorination.
Chlorine	N	2020	1.8	.5 – 2.8	mg/l	0	MDRL = 4	Water additive used to control microbes

PWS ID#	<u>061</u> 007	5			TEST RE	SUL	TS					
Contaminant	Violation Y/N	Date Collecte		-evel etected	Range of Dete # of Sample Exceeding MCL/ACL	es g	Unit Measure -ment	МС	CLG	MCL	-	Likely Source of Contamination
Radioactiv	e Cont	aminan	ts									
5. Gross Alpha	N	2019*	2.8		1.6 – 2.8		pCi/L		0		15	Erosion of natural deposits
6. Radium 226 Radium 228	N	2019*	.89 1.3		.3489 .60 – 1.3		pCi/L		0		5	Erosion of natural deposits
Inorganic	Contan	inants										
8. Arsenic	N	2020	.5		No Range		ppb		n/a		10	Erosion of natural deposits; runc from orchards; runoff from glass and electronics production waste
10. Barium	N	2020	.00	19	No Range		ppm		2	2		Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
13. Chromium	N	2020	2.9		No Range		ppb		100	100		Discharge from steel and pulp mills; erosion of natural deposits
14. Copper	N	2017/19*	.4		0		ppm		1.3	AL=1.3		Corrosion of household plumbin- systems; erosion of natural deposits; leaching from wood preservatives
16. Fluoride	N	2020	1.1	4	No Range		ppm		4	4		Erosion of natural deposits; wate additive which promotes strong teeth; discharge from fertilizer and aluminum factories
17. Lead	N	2017/19	4		0		ppb		0	AL=15		Corrosion of household plumbin systems, erosion of natural deposits
Sodium	N	2019*	120	0000	77000 - 12000	0	ppb		0		0	Road Salt, Water Treatment Chemicals, Water Softeners and Sewage Effluents.
Disinfectio	n By-P	roducts	3									
81. HAA5	N	2020	24	0	- 36	ppb		0		60		-Product of drinking water infection.
82. TTHM [Total trihalomethanes]	N	2020	35	0	– 51	ppb		0		80	Ву	-product of drinking water orination.
Chlorine	N	2020	1.8	.5	- 3.6	mg/l		0	MR)L = 4		ater additive used to control crobes
Unregulate	ed Cont	amina	nts									
Bromide	N	2020	20.1	N	o Range	UG/L	-			ea sea wa		turally-occurring element found in the th's crust and at low concentrations in awater, and in some surface and groun ter; cobaltous chloride was formerly us medicines and as a germicide
Manganese	N	2020	3.6	.7	8 – 3.6	UG/L						turally-occurring element; commercially ailable in combination with other ments and minerals; used in steel duction, fertilizer, batteries and works; drinking water and wastewater atment chemicals; essential nutrient
HAA5	N	2020	28.16	1.	71 – 28.16	UG/L					5	and the second s
HAA6BR	N	2020	6.67	.4	3 – 6.67	UG/L	.					
INVODIV	IN	2020	0.07	1.4	0.01	1 00/1						

HAA9	N	2020	33.11	17.38 – 33.11	UG/L	
Total Organic Carbon	N	2020	1070	1010 - 1070	UG/L	Comes from decaying natural organic matter

^{*} Most recent sample. No sample required for 2020.

As you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some contaminants have been detected however the EPA has determined that your water IS SAFE at these levels.

We are required to monitor your drinking water for specific contaminants on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our water system is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing. Please contact 601.576.7582 if you wish to have your water tested.

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulations are warranted.

To comply with the "Regulation Governing Fluoridation of Community Water Supplies", our system #0610044 is required to report certain results pertaining to fluoridation of our water system. The number of months in the previous calendar year in which average fluoride sample results were within the optimal range of 0.6-1.2 ppm was 12. The percentage of fluoride samples collected in the previous calendar year that was within the optimal range of 0.6-1.2 ppm was 100%.

To comply with the "Regulation Governing Fluoridation of Community Water Supplies", our system #0610075 is required to report certain results pertaining to fluoridation of our water system. The number of months in the previous calendar year in which average fluoride sample results were within the optimal range of 0.6-1.2 ppm was 12. The percentage of fluoride samples collected in the previous calendar year that was within the optimal range of 0.6-1.2 ppm was 94%.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1.800.426.4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline 1.800.426.4791.

The City of Flowood works around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

^{**} Fluoride level is routinely adjusted to the MS State Dept of Health's recommended level of 0.6 - 1.2 mg/l.

AFFIDAVIT

PROOF OF PUBLICATION

RANKIN COUNTY NEWS • P.O. BOX 107 • BRANDON, MS 39043

STATE OF MISSISSIPPI **COUNTY OF RANKIN**

THIS 26TH DAY OF MAY, 2021, personally came Marcus Bowers, publisher of the Rankin County News,

O Annual Drinking Water Quality Report City of Flowcod PWS#: 0610044 & 0810075

ality Water Report. This report is designed to inform you about the quality water and services we vide you with a sale and dependable supply of drinking water. We want you to understand the ment process and protect our water resources. We are committed to ensuring the quality of your scotlered Pormation and Sparta Sand Aquifer.

for our public water system to determine the avorest susceptibility of its drinking water supply to it containing detailed information on how the susceptibility determinations were made has been to containing detailed information on how the susceptibility determinations were made has been to containing upon request. The wells for the City of Floward have received tower to maderate to relevant or the city of the

opening your water utility, please contact Steve Jenkins at 601.939.4243. We want our valued you want to learn more, please attend any of our regularly scheduled meetings. They are held on at the Flowcod City Hall located at 2101 Airport Road, Flowcod, MS.

tions water according to Federal and State lows. This table below lists all of the drinking water according to Federal and State lows. This table below lists all of the drinking water of the surface of land or underground, it dissolves naturally occurring miderals and in some cases, or the surface of land or underground, it dissolves naturally occurring miderals and in some cases, it contaminants from the presence of salmals of from human activity; microbial contaminants, such such presents of the presence of salmals of from human stortly; microbial contaminants, and widdle; increasing his notiversly occurring or result from undan storm-water runoff, industrial, or domestic wastervalter in the neturally occurring or result from undan storm-water runoff, industrial, or domestic wastervalter in pasticides and herbicides, which may come from a variety of sources such as agriculture, undanced contaminants, including synthetic and votatile organic chemicals, which are by-products of can also come from gas stations and septic systems, radioactive contaminants, which can be done also come from gas stations and septic systems. The paster is safe to drink, EPA prescribes production and mining activities. In order to elsave that top water, including battled drinking water, including source drinking water, including battled drinking water, including source drinking water, including battled drin

ations you might not be familiar with. To help you better understand those terms we've provided the

which, if exceeded, triggers treatment or other requirements which a water system must follow

num Allowed" (NCL) is the highost level of a contaminant that is allowed in drinking water. MCLE are just available treisment sechnology.

he "Goar (MCLG) is the level of a contaminant in drinking water below which there is no known or in of safety.

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition

RDLG) — The level of a drinking water disinfectant below which there is no known or expected risk of te use of disinfectants to control microbial contaminants.

ुत) - one part per million corresponds to one minute in two years or a single penny in \$10,000

one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

is a measure of the radioactivity in water.

Level Renge of Detects or # of Samples Exceeding MCL/ACL		Unit	MCLG	MCL	Lin	Likely Source of Contamination				
		Megsure fnem-								
-			-		-1-	Discharge of drilling wastes, dischar	O.			
0065	.00580065	bjam	2		l fr	from metal retinement, excess				
1.8	1.2-1.6	ppb	100	10	0	deposits Discharge from steel and pulp milks, erosion of natural deposits				
7	0	ppm	1,3	AL=1		Corresion of national plumbing Corresion of household plumbing systems, erosion of natural deposity teaching from wood preservatives	5.			
.892	92 833 - 1192		1	1		Erosion of natural seposar, additive which promotes strong teeth, discharge from fertilizer and eluminum				
			1		_	factories	-			
		ppb	\neg	Ō AL	715	Corresion of household plumbing systems, erosion of natural depos	ults micra			
1	0	J. Sp.		0	0	Road Sall, Water Treatment Cher Water Softeners and Sevrage Eff	uent			
110000	No Range	bbp				Water Softeners and General				
			-			80 By-Product of drinking water				
16	15-6	ppb		٥	1	disinfection.				
	No Range	ppb		Ō		chlorination				
2.53 .	No reprise		1	- 1		# 4 Water additive used to contro	st .			

a weekly newspaper printed and published in the City of Brandon, In the County of Rankin and State aforesaid, before me the undersigned officer in and for said County and State, who being duly sworn, deposes and says that said newspaper has been published for more than 12 months prior to the first publication of the attached notice and is qualified under Chapter 13-3-31, Laws of Mississippi, 1936, and laws supplementary and amendatory thereto, and that a certain

ANNUAL DRINKING WATER QUALITY REPORT

CITY OF FLOWOOD

a copy of which is hereto attached, was published in said newspaper One (1) week, as follows, to-wit:

Vol 173 No. 46 on the 26th day of May, 2021

Marcus Bowers

Sworn to and subscribed before me by the aforementioned Marcus Bowers this <u>26th</u> day of <u>May</u>, 2021

> Frances Conoxu Notary Public FRANCES CONGER

My Commission Expires: January 25, 2022

PRINTER'S FEE:

3 column by 18.5 inch ad at \$10 per column inch.........

\$555.00

Proof of Publication

3.00

TOTAL CES. CONCESS \$558.00

NOTARY PUBLIC ID No. 28593 Commission Expires January 25, 2022 PANKIN COUNT

F

RANKIN COUNTY N

betore any easonable ומ אמזחזבווו

STATE OF MISSISSIPPI **COUNTY OF RANKIN**

THIS 26TH DAY OF MAY, 2021, person

2020 Annual Drinking Water Quality Report City of Flowcod PWS#: 0610044 & 0610075 May 2021

Water pleased to present to you this year's Annual Quality Water Roport. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Cockfield Formation and Sparta Sand Aquifer.

The source water assessment has been completed for our public water system to determine the overall susceptibility determinations were made has been identified octonial sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been identified to our public water system and is available for viewing upon request. The wells for the City of Flowood have received lower to moderate susceptibility rankings to contamination.

If you have any questions about this report or concerning your water utility, please contact Stove Jenkins at 801.939,4243. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the first and third Monday of each month at 8:30 PM at the Flowcod City Hall located at 2101 Airport Read, Flowcod, MS.

We routinely monitor for contaminants in your drinking water according to Foderal and State laws. This table below lists all of the drinking water according to Foderal and State laws. This table below lists all of the drinking water according to Foderal and State laws. This table below lists all of the drinking water according to Foderal and State laws. This table below lists all of the drinking water according to Foderal and State laws. This table below lists are repeated to the results As water tenders, the surface of land or underground, it discoves naturally occurring minerals and, in some cases, reduces and bacteria, that may come from sewage freatment plants, explic systems, agricultural levelocity operations, and widelie, increpance as viruses and bacteria, that may come from sewage freatment plants, explic systems, agricultural levelocity operations, and widelie, increpance or an according to the state of t

to this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest taxed of a contaminant that is allowed in drinking water. MCLs are left as close to the MCLS as feasible using the best available treatment technology.

Maximum Contaminant Level Goat (MCLG) - The 'Goat(MCLG) is the level of a contaminant in dishling water below which there is no known or expected task to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) – The highest level of a disinfectant allowed in drinking water. There is consincing evidence that addition of a disinfectant is necessary to control microbial contaminants

Maximum Residual Disinfectant Level Gool (MRDLG) — The level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Pans per million (ppm) or Milligrams per liter (mg/l) - one pan per million corresponds to one minute in two years or a single ponny in \$10,000

Parts per billion (ppb) or Micrograms per filer - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCUL) - picocuries per liter is a measure of the radioactivity in water.

PWS ID#)61004	4	1 100	TEST RESU		MCLG	MCL	Likely Source of Contamination
	Violation V/N	Date Collected	Level Detected	Range of Delecta or # of Samples Exceeding MCL/ACL	Unit Measure -ment	MCLG	mod	
Inorganic (Contac	ninants		Birth On.		PL SH		
10. Bulum	N	2019	.0065	.00580065	ppm	2	2	Discharge of drilling wastes, discharge from metal refineries, erosion of natural deposits
13, Chromium	N	2019	1,6	1.2 - 1.6	ppb	100	100	Otecharge from steet and pulp mills: erosion of natural deposits
13. Chromium	N	2017/19*	7	0	ppm	1,3	AL=1.3	Corrosion of household plumbing systems: erosion of natural deposite; leaching from wood preservatives
16. Fluoride	N	2019*	.892	.833892	ppm	•	4	Erosion of natural deposits, water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
		-		-	-		-	Corresion of household plumbing
17, Lead	IN	2017/19"	1	0	ppb	0	AL=15	systems, erosion of natural deposits
Sodium	N	2019*	110000	No Range	ppb	0	0	Water Softerers and Sewage Effluents
	Day	Drodne	c				10.1	60 By-Product of drinking water
Disinfecti		2020	16	15-6	ppb	0		disinfection
81. HAA5	N	2020	7		- Innh	1 0	-	An By groduct of drinking water
S2 TTHM	N -	2020	2,53	No Range	ppb			chlorination.
uhalometranet	1	2020	1,8	1.5-2.8	mg/l	0	MDRL	- 4 Water additive used to control

Contaminant	Violati		Pate lected	Delecte	Range of D # of Sar Excee MCL//	mples ding	Measure -meni		ACLG	M	GL.	Likely Source of Contamination
Radioacti	ive Con	tamin	ants	W								
5. Gross Alpha	N	2019		2.8	1.6-2.8	-	PCVL	1	0	-	10	I Bearing a Parameter Control
6 Radium 226 Radium 228	N	2019		.89 1.3	3489 .60 - 1.3		PCIAL	9	a		5	Erosion of natural deposits Erosion of natural deposits
Inorganic	Contai	ninap	its			124	VE21			4	100	TRACT PLANE
8. Arsenic	N	2020		.5	No Range		ppb		n/a	10		Erosion of natural deposits; run from orchards; runoff from glas and electronics production was
10 Barlum	N	2020		,0019	No Range		ррт		2	2		Discharge of drilling wastes, discharge from metal refineries erosion of natural deposits
13. Chromium	N	2020		2.9	No Range		ppb		100		100	Discharge from steel and pulc milts; erosion of natural deposit
14. Copper	N	2017/	19*	A STE	0		ppm		1.3	AL=	13	Corrosion of household plumbin systems: erosion of natural deposits; leaching from wood presentatives
16 Fluoride	N	2020		1.14	No Range		ppm		4	4		Erosion of natural deposits, wat additive which promotes strong teeth, discharge from fertilizer and attrainum factories
17, Lead	N	2017/			0		tbpp		0	AL=15		Corresion of household plumbin systems, erosion of natural deposits
Sodium	N	2019*		120000	77000 - 1200	000	ppb		0	0		Road San, Water Treatment Chemicals, Water Softeners and Sevence Efficients
Disinfectio	n By-P	rodue	te	1000			-					Sawade Embeure
1, HAA5		2020	24	0	- 36	ppb		0	K.	80		Product of drinking water
i2. TTHM Total rihalomethanes]	N	2020	35	0	- 51	ppb		٥		80	Ву-	product of drinking water prination.
Chlorine	N	2020	1.B	5	- 3.6	mg/l		0	MRDI	4		ter additive used to control
Unregulate	ed Cont	amina	ants					1				
3romide	N	2020	20,	1 N	o Renge	UG/L					seer!	relly-occurring element found in the h's crust and all few concentrations in water, and in some europea and groups or coballous chlorids was formerly use address and as a germiddle
Aunganese	N :	2020	3.6	7	8 – 3.6	UGIL				Natu svai elen prod fires		irally-occurring element; commercially lable in combination with other works and minorals; used in size! works of minorals; used in size! works; of minorals; easenths in ment chemicals; easenths mutrien!
IAA6	N :	2020	28.	16 1,	71 - 28.16	UG/L		1	795	90		
IAA6BR	N :	2020	6.6	7 .4	3 - 6.67	UGAL		1				ter buyani si
		CHE !			ALE.						350	
eaa)	N 2	2020	33.1	11 17	.38 - 33.11	UGAL		T				H MANAGE CONTRACTOR
						-		-			_	

Total Organic Carbon Most recent sample. No sample regulred for 2020.

N

1010 - 1070

1070

As you can see by the table, our system had no violations. We're proud that your drinking water mosts or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some contaminants have been detected however the EPA has determined that your water iS

UG/L

Comes from decaying natural organic

matter

We are required to monitor your drinking water for specific contaminants on a monthly bests. Results of requier monitoring are an indicator of whether or not our drinking water meets health standards. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young childran, Lead in drinking water is primarily from materials and components associated with service tines and home planning. Our water system is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing you spice of accords to 2 minimizes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested information on lead in drinking water, testing mothods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hottine or at http://www.eps.gov/safewater/lead. The Missessippi State Department of Hissith Public Health Laboratory offers lead textling. Please contact 801,576,7582 if you wish to have your water tested.

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated conteminants in drinking water and whether future regulations are warranted.

To comply with the 'Regulation Governing Fluoridation of Community Water Supplies', our system #0610044 is required to report certain results pertaining to fluoridation of our water system. The number of months in the previous calendar year in which everage fluoride sample results were within the optimal range of 0.6-1.2 ppm was 12. The percentage of fluoride samples collected in the previous calendar year that was within the optimal range.

To comply with the "Regulation Governing Fluoridation of Community Water Supplies", our system #05/0075 is required to report certain results pertaining to fluoridation of our water system. The number of months in the previous calendar year in which average fluorida sample results were within the optimal range of 0.8-1.2 ppm was 12. The percentage of fluorida samples collected in the previous calendar year that was within the optimal range.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be intercoses, horganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water pases a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water

Some people may be more sufferable to contaminants in drinking water than the general population, immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disordors, some elderly, and infants can be particularly at risk from intections. These people should seek advice about drinking water from their health care provides. EPA/CDC guidelines on appropriate measure to lessen the risk of infection by cryptosperidium and other microbiological contaminants are available from the Safe Orinking Water Hotine 1,800 428,4791.

The City of Flowcod works around the clock to provide too quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, cut way of life and our children's future.

^{**} Fluoride level is routinely adjusted to the MS State Dept of Health's recommended level of 0.6 - 1.2 mg/l.