The Federal Safe Drinking Water Act (SDWA) requires each Community public water system to develop and distribute a Consumer Confidence Report (CCR) to its customers each year. Depending on the population served by the public water system, this CCR must be mailed or delivered to the customers, published in a newspaper of local circulation, or provided to the customers upon request. Make sure you follow the proper procedures when distributing the CCR. **You must mail, fax or email a copy of the CCR and Certification to MSDH. Please check all boxes that apply.**

Customers were informed of availability of CCR by: *(Attach copy of publication, water bill or other)*

- Advertisement in local paper (attach copy of advertisement)
- On water bills (attach copy of bill)
- Email message (MUST Email the message to the address below)
- **Other**

Date(s) customers were informed: __/__/____ __/__/____ __/__/____ __/__/____ __/__/____ __/__/____ __/__/____

CCR was distributed by U.S. Postal Service or other direct delivery. Must specify other direct delivery methods used

Date Mailed/Distributed: __/__/____

CCR was distributed by Email (MUST Email MSDH a copy)

- As a URL (Provide URL)
- As an attachment
- As text within the body of the email message

**CCR was published in local newspaper. *(Attach copy of published CCR or proof of publication)*

Name of Newspaper: Wayne County News

Date Published: __/__/____

**CCR was posted in public places. *(Attach list of locations)*

Date Posted: __/__/____

**CCR was posted on a publicly accessible internet site at the following address *(DIRECT URL REQUIRED):*

CERTIFICATION

I hereby certify that the Consumer Confidence Report (CCR) has been distributed to the customers of this public water system in the form and manner identified above and that I used distribution methods allowed by the SDWA. I further certify that the information included in this CCR is true and correct and is consistent with the water quality monitoring data provided to the public water system officials by the Mississippi State Department of Health, Bureau of Public Water Supply.

Name/Title (President, Mayor, Owner, etc.)

Date: __/__/____

Submission options *(Select one method ONLY)*

Mail: (U.S. Postal Service)

MSDH, Bureau of Public Water Supply
P.O. Box 1700
Jackson, MS 39215

Fax: (601) 576 - 7800

Email: water.reports@msdh.ms.gov

CCR Deadline to MSDH & Customers by July 1, 2017!
We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the effort we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Lower Wilcox Aquifer.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identified potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the Hiwannee Water Association have received a lower susceptibility ranking to contamination.

If you have any questions about this report or concerning your water utility, please contact Sarah Doby at 601.735.5249. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the first Thursday of the month at 8:30 AM at 929 Wayne Street, Waynesboro, MS 39367.

We routinely monitor for contaminants in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that we detected during the period of January 1st to December 31st, 2016. In cases where monitoring wasn't required in 2016, the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily indicate that the water poses a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

<table>
<thead>
<tr>
<th>PWS #: 0770005</th>
<th>TEST RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contaminant</td>
<td>Violation Y/N</td>
</tr>
<tr>
<td>Inorganic Contaminants</td>
<td></td>
</tr>
<tr>
<td>8. Arsenic</td>
<td>N</td>
</tr>
<tr>
<td>10. Barium</td>
<td>N</td>
</tr>
<tr>
<td>13. Chromium</td>
<td>N</td>
</tr>
<tr>
<td>14. Copper</td>
<td>N</td>
</tr>
<tr>
<td>16. Fluoride</td>
<td>N</td>
</tr>
<tr>
<td>17. Lead</td>
<td>N</td>
</tr>
<tr>
<td>21. Selenium</td>
<td>N</td>
</tr>
</tbody>
</table>

Disinfection By-Products

81. HAA5	N	2016	18	11 - 22	ppb	0	60	By-Product of drinking water disinfection.
82. TTHM [Total trihalomethanes]	Y	2016	118	89.7 - 124	ppb	0	80	By-product of drinking water chlorination.
Chlorine	N	2016	1.1	.05 - 3.06	Mg/l	0	MDRL = 4	Water additive used to control microbes

PWS #: 0770008

TEST RESULTS

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Violation Y/N</th>
<th>Date Collected</th>
<th>Level Detected</th>
<th>Range of Detects or # of Samples Exceeding MCL/ACL</th>
<th>Unit Measurement</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Arsenic</td>
<td>N</td>
<td>2016</td>
<td>.7</td>
<td>No Range</td>
<td>ppb</td>
<td>n/a</td>
<td>10</td>
<td>Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes</td>
</tr>
<tr>
<td>10. Barium</td>
<td>N</td>
<td>2016</td>
<td>.0304</td>
<td>No Range</td>
<td>Ppm</td>
<td>2</td>
<td>2</td>
<td>Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits</td>
</tr>
<tr>
<td>13. Chromium</td>
<td>N</td>
<td>2016</td>
<td>.8</td>
<td>No Range</td>
<td>ppb</td>
<td>100</td>
<td>100</td>
<td>Discharge from steel and pulp mills; erosion of natural deposits</td>
</tr>
<tr>
<td>14. Copper</td>
<td>N</td>
<td>2012/14*</td>
<td>.2</td>
<td>0</td>
<td>ppm</td>
<td>1.3</td>
<td>AL=1.3</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives</td>
</tr>
<tr>
<td>16. Fluoride</td>
<td>N</td>
<td>2016</td>
<td>.617</td>
<td>No Range</td>
<td>ppm</td>
<td>4</td>
<td>4</td>
<td>Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories</td>
</tr>
<tr>
<td>17. Lead</td>
<td>N</td>
<td>2012/14*</td>
<td>3</td>
<td>0</td>
<td>ppb</td>
<td>0</td>
<td>AL=15</td>
<td>Corrosion of household plumbing systems, erosion of natural deposits</td>
</tr>
<tr>
<td>21. Selenium</td>
<td>N</td>
<td>2016</td>
<td>3</td>
<td>No Range</td>
<td>ppb</td>
<td>50</td>
<td>50</td>
<td>Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines</td>
</tr>
</tbody>
</table>

Disinfection By-Products

81. HAA5	N	2016	14	5 - 22	ppb	0	60	By-Product of drinking water disinfection.
82. TTHM [Total trihalomethanes]	Y	2016	130	15.9 - 156	ppb	0	80	By-product of drinking water chlorination.
Chlorine	N	2016	1.1	.05 - 1.5	ppm	0	MDRL = 4	Water additive used to control microbes

* Most recent sample. No sample required for 2016

Disinfection By-Products:
Total Trihalomethanes (THM). Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

We routinely monitor for the presence of drinking water contaminants. Testing results show that both our systems exceeded the standard or maximum contaminant level (MCL) for Disinfection Byproducts in all quarters of 2016. The standard for Trihalomethanes (THM) is .080 mg/l. As you can see in the charts we exceeded that amount. Aeration system has been installed to decrease THMs in our water. This has been in full operation since March 1, 2017. We should see a reduction in THM numbers.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our water system is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing. Please contact 601.576.7582 if you wish to have your water tested.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline 1-800-426-4791.

The Hiwannee Water Association works around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children’s future.

Please note: this report will not be mailed to customers individually, it will be published in local paper.
AFFIDAVIT

WAYNE COUNTY NEWS
PO BOX 509
WAYNESBORO, MS 39367

DATE: 4/27/2017

HIWANEE WATER ASSOCIATION, INC.
929 WAYNE ST
WAYNESBORO, MS 39367

<table>
<thead>
<tr>
<th>NO.</th>
<th>P.O.</th>
</tr>
</thead>
<tbody>
<tr>
<td>770005</td>
<td></td>
</tr>
<tr>
<td>770008</td>
<td></td>
</tr>
</tbody>
</table>

2016 ANNUAL DRINKING WATER QUALITY REPORT

Being sworn, says that he is Publisher of the Wayne County News, which publishes a weekly newspaper in the County of Wayne, State of Mississippi; and the attached notice appeared in the issue(s) of the Wayne County News.

Publish Dates:
April 27, 2017

Sworn to and subscribed before me on this 27th day of April, 2017

[Signature]

Notary Public
My Commission Expires 10/14/19

WE APPRECIATE YOUR BUSINESS
FOR BILLING INQUIRES-CALL (601-735-4341)
HIWANNEE WATER ASSOCIATION, INC. 06-75
PH. 601-735-5240
829 WAYNE STREET
WAYNESBORO, MS 38967

SINCE THIS IS A NEGOTIABLE INSTRUMENT IT MUST BE DISCHARGED TO THE ORDER OF

Wayne County News

Three Hundred Fifty Eight Dollars $358.65

First State Bank

CCE Report 2016

Date: April 21, 2017

Sarah Dallas

21466
2018 Annual Drinking Water Quality Report
Hawnee Water Association, Inc.
PWS#: 770006 & 770038
April 2017

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Lower Wilcox Aquifer.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identified potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the Hawnee Water Association have received a lower susceptibility ranking to contamination.

If you have any questions about this report or concerning your water utility, please contact Sarah Doby at 601.765.5249. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the first Thursday of the month at 6:30 AM at 820 Wayne Street, Waynesboro, MS 38997.

We routinely monitor for contaminants in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that we detected during the period of January 1 to December 31, 2016. In cases where monitoring wasn’t required in 2016, the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, and agriculture; and pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and sewage treatment plants. In this table, you will find many terms and abbreviations you may not be familiar with. To help you better understand these terms we’ve provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal"(MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Violation Y/N</th>
<th>Date Collected</th>
<th>Level Detected</th>
<th>Range of Decor & # of Samples</th>
<th>Unit Measurement</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Asbestos</td>
<td>N</td>
<td>2016</td>
<td>8</td>
<td>7 - 9</td>
<td>ppt</td>
<td>10</td>
<td>Erosion of natural deposits; runoff from orchards, rooting from grass and other vegetation, erosion of natural deposits.</td>
<td></td>
</tr>
<tr>
<td>13. Chromium</td>
<td>N</td>
<td>2016</td>
<td>1</td>
<td>.1 - 1</td>
<td>ppt</td>
<td>100</td>
<td>Discharge from steel and pulp mills; erosion of natural deposits.</td>
<td></td>
</tr>
<tr>
<td>14. Copper</td>
<td>N</td>
<td>2017</td>
<td>.5</td>
<td>0</td>
<td>ppm</td>
<td>1.5</td>
<td>AL=1.3</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.</td>
</tr>
</tbody>
</table>
| 16. Fluoride | N | 2016 | .575 | .361-.575 ppm | 4 | 4 | Erosion of natural deposits; water additives which promote strong
| | | | | | | teeth; discharge from fertilizer and alumix factories.
| 17. Lead | N | 2012/14* | 3 | 0 | ppb | AL*15 | Corrosion of household plumbing systems; erosion of natural
| deposits; testing from wood preservatives.
| 21. Selenium | N | 2016 | 3.2 | 2.6-3.2 ppb | 50 | 50 | Discharge from petroleum and metal refineries; erosion of
| natural deposits; discharge from mines.

Disinfection By-Products

| 91. HAAS | N | 2016 | 18 | 11-22 | ppb | 0 | 50 | By-Product of drinking water
| | | | | | | distribution.
| 92. TTHM (Total Trihalomethanes) | Y | 2016 | 119 | 88.7-124 | ppb | 0 | 80 | By-product of drinking water
| | | | | | | treatment.
| Chlorine | N | 2016 | 1.1 | .08-3.08 | mg/l | 0 | NDRL = 4 | Water additive used to control
| | | | | | | microbes.

PWS #: 9770008

Test Results

Inorganic Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Violation Y/N</th>
<th>Data Collected</th>
<th>Level Detected</th>
<th>Range of Detectable Analytes Exceeding MCL/AUX</th>
<th>Unit Measurement</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
</table>
| 8. Arsenic | N | 2018 | 1.7 | No Range | ppt | n/a | 10 | Erosion of natural deposits; run-off from mining; run-off from
| | | | | | | | iron and steel mills; coal tar; electronic production wastes. |
| 10. Barium | N | 2018 | .0254 | No Range | ppm | 2 | 2 | Corrosion of household plumbing systems; erosion of
| | | | | | | | natural deposits; testing from wood preservatives. |
| 13. Chromium | N | 2018 | .8 | No Range | ppt | 100 | 100 | Discharge from steel and
| | | | | | | | iron mills; testing from wood preservatives. |
| 14. Copper | N | 2012/14* | .2 | 0 | ppb | 1.3 | AL*1.3 | Corrosion of household plumbing systems; erosion of natural
| | | | | | | | deposits; testing from wood preservatives. |
| 16. Fluoride | N | 2016 | 1.87 | No Range | ppm | 4 | 4 | Erosion of natural deposits; water additives which promote strong
| | | | | | | | teeth; discharge from fertilizer and alumix factories. |
| 17. Lead | N | 2012/14* | 3 | 0 | ppb | 0 | AL*15 | Corrosion of household plumbing systems; erosion of natural
| | | | | | | | deposits; testing from wood preservatives. |
| 21. Selenium | N | 2016 | 3.2 | 2.6-3.2 | ppb | 50 | 50 | Discharge from petroleum and metal refineries; erosion of
| | | | | | | | natural deposits; discharge from mines. |

Disinfection By-Products

| 91. HAAS | N | 2016 | 18 | 11-22 | ppb | 0 | 50 | By-Product of drinking water
| | | | | | | | distribution. |
| 92. TTHM (Total Trihalomethanes) | Y | 2016 | 119 | 88.7-124 | ppb | 0 | 80 | By-product of drinking water
| | | | | | | | treatment. |
| Chlorine | N | 2016 | 1.1 | .08-3.08 | mg/l | 0 | NDRL = 4 | Water additive used to control
| | | | | | | | microbes. |

* Most recent sample. No recent samples required.

(92) Total Trihalomethanes (TTHM): Some people who drink water containing trihalomethanes in excess of the MCL may experience problems with their teeth, kidney, or central nervous system, and may have an increased risk of getting cancer.

We routinely monitor for the presence of drinking water contaminants. Testing results show that both our systems exceeded the standard or maximum contaminant level (MCL) for Disinfection By-Products in all quarters of 2016. The MCL for Total Trihalomethanes (TTHM) is 80 mg/l. As you can see in the charts we exceeded that amount. Aeration system has been installed to decrease TTHMs in our water. This has been in full operation since March 1, 2017. We should see a reduction in TTHM numbers.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our water system is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the State Drinking Water Hotline at 1-800-422-4791. You can also contact the Massachusetts Department of Public Health: Public Health Laboratory offers lead testing. Please contact 508.578.7002 if you wish to have your water tested.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbial, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at 1-800-422-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population, immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/ANSI guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the State Drinking Water Hotline 1-800-422-4791.

The Hiramite Water Association works around the clock to provide top quality water to every tap. We ask that all our customers help protect our water sources, which are the heart of our community, our way of life and our children’s future.

Please note: this report will not be mailed to customers individually. It will be published in local paper.