2017 MAY -1 AM 9: 0! CERTIFICATION Consumer Confidence Report (CCR) Public Water Supply Name | 410001, 410024, 410025, 410035, 410040, 410041, 410042, 410043 List PWS ID #s for all Community Water Systems included in this CCR | | |---|-----------------------------| | The Federal Safe Drinking Water Act (SDWA) requires each Community public water system to develop and distribute Consumer Confidence Report (CCR) to its customers each year. Depending on the population served by the public water system, this CCR must be mailed or delivered to the customers, published in a newspaper of local circulation, or provided to the customers upon request. Make sure you follow the proper procedures when distributing the CCR. You must mail, fax of email a copy of the CCR and Certification to MSDH. Please check all boxes that apply. | a
er
ne
o <u>r</u> | | Customers were informed of availability of CCR by: (Attach copy of publication, water bill or other) | | | ☐ Advertisement in local paper (attach copy of advertisement) | | | On water bills (attach copy of bill) | | | ☐ Email message (MUST Email the message to the address below) | | | ☐ Other | | | Date(s) customers were informed: 5/1/17, //, // | | | CCR was distributed by U.S. Postal Service or other direct delivery. Must specify other direct deliver methods used | | | Date Mailed/Distributed: / / | | | CCR was distributed by Email (MUST Email MSDH a copy) Date Emailed: / / | | | ☐ As a URL (Provide URL) | | | ☐ As an attachment | | | ☐ As text within the body of the email message | | | CCR was published in local newspaper. (Attach copy of published CCR or proof of publication) | | | Name of Newspaper: | | | Date Published:/ | | | CCR was posted in public places. (Attach list of locations) Date Posted:/ | | | CCR was posted on a publicly accessible internet site at the following address (DIRECT URL REQUIRED) | : | | north lee unter.org www.north leewater.org/assets/1/1e/CCR201 | 6.p | | CERTIFICATION I hereby certify that the Consumer Confidence Report (CCR) has been distributed to the customers of this public water system is the form and manner identified above and that I used distribution methods allowed by the SDWA. I further certify that the information included in this CCR is true and correct and is consistent with the water quality monitoring data provided to the public water system officials by the Mississippi State Department of Health, Bureau of Public Water Supply Name/Title (President, Mayor, Owner, etc.) Date | in
1e | | Submission options (Select one method ONLY) | | | Mail: (U.S. Postal Service) MSDH, Bureau of Public Water Supply P.O. Box 1700 Jackson, MS 39215 Fax: (601) 576 - 7800 Email: water.reports@msdh.ms.gov | | CCR Deadline to MSDH & Customers by July 1, 2017! 2017 APR 25 PM 2: 15 ## 2016 Annual Drinking Water Quality Report North Lee County Water Association PWS#: 410001, 410024, 410025, 410035, 410040, 410041, 410042, 410043 April 2017 We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to providing you with information because informed customers are our best allies. Our water source is from wells drawing from the Eutaw, Lower Eutaw, Eutaw-McShan and Gordo Formation Aquifers. The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identify potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the North Lee Water Association have received moderate rankings in terms of susceptibility to contamination. If you have any questions about this report or concerning your water utility, please contact Dustin Hathcock at 662.869.1223. We want our valued customers to be informed about their water utility. If you want to learn more, please join us at any of our regularly scheduled meetings. They are held on the second Thursday of the month at 7:00 PM at the Birmingham Ridge Fire Department located at 947 CR 1948, Saltillo, MS. Your CCR will not be mailed out to each individual customer, however you may obtain a copy by calling the office at 662.869.1223. We routinely monitor for contaminants in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that were detected during the period of January 1st to December 31st, 2016. In cases where monitoring wasn't required in 2016, the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily indicate that the water poses a health risk. In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions: Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. Maximum Residual Disinfectant Level (MRDL) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary to control microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000. Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000. Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water. Level 1 assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. | PWS ID# | 410001 | | | TEST RESU | LTS | | | _ | |--|------------------|-------------------|-------------------|--|--------------------------|------|--------|---| | Contaminant | Violation
Y/N | Date
Collected | Level
Detected | Range of Detects or
of Samples
Exceeding
MCL/ACL/MRDL | Unit
Measure
-ment | MCLG | MCL | Likely Source of Contamination | | Inorganic (| Contam | inants | | | | | | | | 10. Barium | N | 2015* | .087 | .066087 | ppm | 2 | 2 | Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits | | 13. Chromium | N | 2015* | 1.9 | No Range | ppb | 100 | 100 | Discharge from steel and pulp mills; erosion of natural deposits | | 14. Copper | N | 2012/14* | .7 | 0 | ppm | 1.3 | AL=1.0 | 3 Corrosion of household plumbing
systems; erosion of natural
deposits; leaching from wood
preservatives | | 17. Lead | N | 2012/14* | 1 - | 0 | ppb | 0 | AL=1 | Corrosion of household plumbing
systems, erosion of natural
deposits | | Disinfectio | n By-Pı | roducts | | | | | | | | 82. TTHM
[Total
trihalomethanes] | N | 2015* | 2.6 N | lo Range ppb | | 0 | | By-product of drinking water chlorination. | | Chlorine | N | 2016 | 1 . | 3 – 2.2 mg | 1 | 0 MR | DL = 4 | Water additive used to control | | PWS ID# | 410024 | | | TEST RESU | JLTS | | | | |--------------|------------------|-------------------|-------------------|---|------------------|------|--------|--| | Contaminant | Violation
Y/N | Date
Collected | Level
Detected | Range of Detects of # of Samples Exceeding MCL/ACL/MRDL | Measure
-ment | MCLG | MCL | Likely Source of Contamination | | Inorganic | Contam | inants | | | | | | | | 10. Barium | N | 2015* | .127 | No Range | ppm | 2 | 2 | Discharge of drilling wastes;
discharge from metal refineries;
erosion of natural deposits | | 13. Chromium | N | 2015* | 1.5 | 1 -1.5 | ppb | 100 | 100 | Discharge from steel and pulp mills; erosion of natural deposits | | 14. Copper | N | 2012/14* | .3 | 0 | ppm | 1.3 | AL=1.3 | Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | | 17. Lead | N | 2012/14* | 1 | 0 | ppb | 0 | AL=15 | Corrosion of household plumbing systems, erosion of natural deposits | | Volatile O | rganic (| Contamii
2016 | .0008 | No Range | ppm | 10 | 10 | Discharge from petroleum factories; discharge from chemical factories | | Disinfection | on By-Pi | roducts | | 1 | 1 | | | <u> </u> | | Chlorine | | 2016 .8 | 3 | 3 – 10 m | j/ l | 0 MR | | ater additive used to control | | Contaminan | Violatio
Y/N | n Date
Collected | Level
Detected | Range of Detects # of Samples Exceeding MCL/ACL/MRDL | or Unit
Measure
-ment | MCLG | MCL | Likely Source of Contamination | |--------------|-----------------|---------------------|-------------------|--|-----------------------------|------|--------|---| | Inorgai | nic Contan | ninants | | | | | | | | 10. Barium | N | 2015* | .4368 | No Range | ppm | 2 | 2 | Discharge of drilling wastes;
discharge from metal refineries;
erosion of natural deposits | | 13. Chromiu | m N | 2015* | 2.8 | No Range | ppb | 100 | 100 | Discharge from steel and pulp mills; erosion of natural deposits | | 14. Copper | N | 2012/14* | .4 | 0 | ppm | 1.3 | AL=1.3 | Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | | 16. Fluoride | N | 2015* | 186 | No Range | ppm | 4 | 4 | Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories | | 17. Lead | N | 2012/14* | 3 | 0 | ppb | 0 | AL=15 | Corrosion of household plumbing systems, erosion of natural deposits | | Disinfe | ction By-P | roducts | | | | · — | · —— | | | Chlorine | N | 2016 . | 8 .: | 3 – 2.3 m | g/l | 0 MR | | Vater additive used to control | | PWS ID# | +10022 | | | TEST RES | OLIS | | | _ | |-------------------------------|------------------|-------------------|-------------------|--|------------------|------|--------|---| | Contaminant | Violation
Y/N | Date
Collected | Level
Detected | Range of Detects # of Samples Exceeding MCL/ACL/MRDL | Measure
-ment | MCLG | MCL | Likely Source of Contamination | | Microbiolo | gical C | ontamin | ants | | | | | | | 1. Total Coliform
Bacteria | N | June | Positive | 1 | NA | 0 | . ba | ence of coliform Naturally present acteria in 5% of in the environme onthly samples | | Inorganic (| Contam | inants | | | | | | | | 10. Barium | N | 2015* | .267 | No Range | ppm | 2 | 2 | Discharge of drilling wastes;
discharge from metal refineries;
erosion of natural deposits | | 13. Chromium | N | 2015* | 2.7 | No Range | ppb | 100 | 100 | Discharge from steel and pulp mills; erosion of natural deposits | | 14. Copper | N | 2012/14* | .3 | 0 | ppm | 1.3 | AL=1.3 | Corrosion of household plumbin
systems; erosion of natural
deposits; leaching from wood
preservatives | | 16. Fluoride | N | 2015* | .136 | No Range | ppm | 4 | 4 | Erosion of natural deposits; wate
additive which promotes strong
teeth; discharge from fertilizer and
aluminum factories | | 17. Lead | N | 2012/14* | 2 | 0 | ppb | 0 | AL=15 | Corrosion of household plumbin systems, erosion of natural deposits | | Disinfectio | n By-Pı | roducts | | | | | | | | Chlorine | 1 | 2016 .9 | 3. | 3 – 2.1 m | g/l | 0 MR | | Vater additive used to control nicrobes | | Contaminant | Violation
Y/N | Date
Collected | Level
Detected | Range of Detects # of Samples Exceeding MCL/ACL/MRDL | or Unit
Measure
-ment | MCLG | MCL | Likely Source of Contamination | |--------------|------------------|-------------------|-------------------|--|-----------------------------|-------|-------|--| | Inorganic | Contam | inants | | | | | | | | 10. Barium | N | 2015* | .1556 | No Range | ppm | 2 | 2 | Discharge of drilling wastes;
discharge from metal refineries;
erosion of natural deposits | | 13. Chromium | N | 2015* | 1.8 | No Range | ppb | 100 | 100 | Discharge from steel and pulp mills; erosion of natural deposits | | 14. Copper | N | 20112/14* | .3 | 0 | ppm | 1.3 | AL=1. | 3 Corrosion of household plumbing
systems; erosion of natural
deposits; leaching from wood
preservatives | | 16. Fluoride | N | 2015* | .136 | No Range | ppm | 4 | 4 | Erosion of natural deposits; water
additive which promotes strong
teeth; discharge from fertilizer and
aluminum factories | | 17. Lead | N | 2012/14* | 1 | 0 | ppb | 0 | AL=1 | 5 Corrosion of household plumbing
systems, erosion of natural
deposits | | Disinfection | on By-Pı | roducts | | | | | | | | Chlorine | N | 2016 .8 | 3 .3 | 5 – 1.3 m | g/l | 0 MRI | | Water additive used to control | | PWS ID # 4 | 110041 | | | TEST RES | SULTS | | | | | |--|------------------|-------------------|-------------------|---|-----------------|-----|-----|--------|--| | Contaminant | Violation
Y/N | Date
Collected | Level
Detected | Range of Detects # of Samples Exceeding MCL/ACL/MRD | Measur
-ment | - 1 | LG | MCL | Likely Source of Contamination | | Inorganic (| Contan | ninants | | | | | | | | | 8. Arsenic | N | 2014* | .8 | .58 | ppb | | n/a | 10 | Erosion of natural deposits; runof
from orchards; runoff from glass
and electronics production wastes | | 10. Barium | N | 2014* | .1485 | .14561485 | ppm | | 2 | 2 | Discharge of drilling wastes;
discharge from metal refineries;
erosion of natural deposits | | 13. Chromium | N | 2014* | 6 | 4.2 - 6 | ppb | | 100 | 100 | Discharge from steel and pulp mills; erosion of natural deposits | | 14. Copper | N | 2015 | .3 | 0 | ppm | | 1.3 | AL=1.3 | Corrosion of household plumbing
systems; erosion of natural
deposits; leaching from wood
preservatives | | 16. Fluoride | N | 2014* | .19 | .14819 | ppm | | 4 | 4 | Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer an aluminum factories | | 17. Lead | N | 2015 | 2 | 0 | ppb | | 0 | AL=15 | Corrosion of household plumbing
systems, erosion of natural
deposits | | Disinfection | n By-P | roducts | | | | | | | | | 82. TTHM
[Total
trihalomethanes] | N | 2016 | 15.41 I | No Range | ppb | 0 | | | By-product of drinking water hlorination. | | Chlorine | N | 2016 | 1 . | 3 – 1.6 | mg/l | 0 | MRI | | Vater additive used to control nicrobes | | PWS ID # 4 | 410042 | | | TEST RES | ULTS | | | | |----------------------------|------------------|-------------------|-------------------|--|------------------|------------|---------|--| | Contaminant | Violation
Y/N | Date
Collected | Level
Detected | Range of Detects # of Samples Exceeding MCL/ACL/MRDI | Measure
-ment | MCLG | MCL | Likely Source of Contamination | | Inorganic (| Contam | inants | | | | | | | | 10. Barium | N | 2015* | .1266 | No Range | ppm | 2 | | Discharge of drilling wastes;
discharge from metal refineries;
erosion of natural deposits | | 13. Chromium | N | 2015* | 2.2 | No Range | ppb | 100 | 10 | Discharge from steel and pulp mills; erosion of natural deposits | | 14. Copper | N | 2015* | .3 | 0 | ppm | 1.3 | AL=1 | Corrosion of household plumbing
systems; erosion of natural
deposits; leaching from wood
preservatives | | Disinfection | | | .29 N | lo Range p | pb | o I | 80 | By-product of drinking water | | [Total
trihalomethanes] | | 2010 | | io rango p | r~ | | | chlorination. | | Chlorine | N | 2016 1 | | 30– 1.7 n | ng/l | O MF | RDL = 4 | Water additive used to control microbes | | PWS ID# | 410043 | | | TEST RESU | ILTS | | | | |--------------|------------------|-------------------|-------------------|--|--------------------------|------|--------|---| | Contaminant | Violation
Y/N | Date
Collected | Level
Detected | Range of Detects o # of Samples Exceeding MCL/ACL/MRDL | Unit
Measure
-ment | MCLG | MCL | Likely Source of Contamination | | Inorganic | Contam | inants | | | | | | | | 10. Barium | N | 2012* | .28 | No Range | ppm | 2 | 2 | Discharge of drilling wastes;
discharge from metal refineries;
erosion of natural deposits | | 13. Chromium | N | 2012* | .8 | No Range | ppb | 100 | 100 | Discharge from steel and pulp mills; erosion of natural deposits | | 14. Copper | N | 2016 | .2 | 0 | ppm | 1.3 | AL=1.3 | B Corrosion of household plumbing
systems; erosion of natural
deposits; leaching from wood
preservatives | | 16. Fluoride | N | 2012* | .158 | No Range | ppm | 4 | 4 | Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories | | 17. Lead | N | 2016 | 1 | 0 | ppb | 0 | AL=15 | 5 Corrosion of household plumbing
systems, erosion of natural
deposits | | Disinfection | on By-P | roducts | | | | | | | | Chlorine | N | 2016 1 | .3 | 7 mg | 1 | 0 MR | | Nater additive used to control microbes | ^{*} Most recent sample. No sample required for 2016. Microbiological Contaminants: On system #410035 we were required to conduct one (1) Level 1 assessment. The Level 1 assessment was completed. In addition, we were required to take one (1) corrective action that was also completed. ⁽¹⁾ Total Coliform. Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially-harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliform indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessments(s) to identify problems and to correct any problems that were found during these assessments. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our water system is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing. Please contact 601.576.7582 if you wish to have your water tested. All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline 1.800.426.4791. The North Lee County Water Association works around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.