6016432361

BUREAU OF PUBLIC WATER SUPPLY

CALENDAR YEAR 2011 CONSUMER CONFIDENCE REPORT CERTIFICATION FORM

Town Mendvile
Public Water Supply Name
List PWS ID #s for all Water Systems Covered by this CCR
List PWS ID #s for all Water Systems Covered by this CCR

The Federal Safe Drinking Water Act requires each community public water system to develop and distribute a consumer confidence report (CCR) to its customers each year. Depending on the population served by the public water system, this CCR must be mailed to the customers, published in a newspaper of local circulation, or provided to the customers upon request.

Please Answer the Following Questions Regarding the Consumer Confidence Report

X	Customers w	ere informed of availability of CCR by: (Attack	copy of publication, water bill or other)						
	X	Advertisement in local paper On water bills Other	· · · · · · · · · · · · · · · · · · ·						
	Date custon	ners were informed:							
	CCR was di	istributed by mail or other direct delivery.	Specify other direct delivery methods:						
	Date Mailed/	Distributed: / /							
K	CCR was published in local newspaper. (Attach copy of published CCR or proof of publication)								
,	Name of Newspaper: Franklin Hovicate								
	Date Publishe	00.01/19/20/2							
- 4	CCR was pos	ted in public places. (Attach list of locations)							
	Date Posted:_	nome de anno de annome.							
•	CCR was pos	ted on a publicly accessible internet site at the	iddress; www.						
<u>cer</u>	<u>FIFICATION</u>								
the fo	irm and manner stent with the v	identified above. I further certify that the in	distributed to the customers of this public water system in formation included in this CCR is true and correct and is public water system officials by the Mississippi State						
70		n, Mayor, Owner, etc.)	Date Date						
(V CEPPE	e/pium (Presiden	n, mayor, wwner, etc.)	L/Q!€						

Mail Completed Form to: Bureau of Public Water Supply/P.O. Box 1700/Jackson, MS 39215 Phone: 601-376-7318

engener o e e

21500

2011 Annual Orinking Water Quality Report Town of Meadvills PVV\$#: 0190003 June 2012

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Micobine Series Aquifer.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identified potential sources of contamination. A report containing datalled information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the Town of Meadville have received a moderate susceptibility ranking to contamination.

if you have any questions about this report or concerning your water utility, please contact Marjorie Brown at 601.754.6763. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the first Tuesday of each month at 6:30 PM at the City Hall.

We routinely monitor for constituents in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that were detected during the period of January 1" to December 31", 2011. In cases where monitoring wasn't required in 2011, the table reflects the most recent results. As water travels over the surface of land or underground, it classows naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlift; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, inclustrial, or domestic wastewater discharges, oil and gas production, mining, or residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and perroleum production, and can also come from a stations and applie systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is as to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily indicate that the water poses a health rak.

In this table you will find many terms and aboreviations you might not be familiar with. To halp you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal"(MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing avidence that addition of a disinfectant is necessary for control microbial contaminants.

Maximum Residual Disinfactant Level Goal (MROLG) - The level of a drinking water disinfactant below which there is no known or expected risk of health. MROLGs do not reflect the benefits of the use of disinfactants to control microbial contaminants.

Parts par million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single periny in

Parts our billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single panny in \$10,000,000.

And the second of the second s	······································	The state of the s	Carl Carl Carl Carl Carl Carl Carl Carl	о под нем на 1955 г. и менеција (1965 г. 1966 г.). На 1966 г. 1	WANTE COLUMN STATE OF THE STATE			
•				TEST RESU	ILTS			
Contaminant	Violation	Date Collected	Level Detected	Range of Detects or a of Samples Excessing MCL/ACL	Unit Measure Aners	MCLG	MCL	Likely Source of Contemination
Inorganic C	ontami	inants						(m.y., 1)

2011 Annual Drinking Water Quality Report Town of Meadville PWS#: 0190003 June 2012

2012 JUL -2 PM 3: 37

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Miocene Series Aquifer.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identified potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the Town of Meadville have received a moderate susceptibility ranking to contamination.

If you have any questions about this report or concerning your water utility, please contact Marjorie Brown at 601.754.6753. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the first Tuesday of each month at 6:30 PM at the City Hall.

We routinely monitor for constituents in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that were detected during the period of January 1st to December 31st, 2011. In cases where monitoring wasn't required in 2011, the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily indicate that the water poses a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10.000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

TEST RESULTS								
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure -ment	MCLG	MCL	Likely Source of Contamination

10. Barium	N	2011	.025	No Range	pr	om	2		Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits		
13. Chromium	N	2011	1.26	No Range	pr	ob	100	10	Discharge from steel and pulp mills; erosion of natural deposits		
14. Copper	N	2009/11	.8	0	pr	om	1.3	AL=1	.3 Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives		
17. Lead	N	2009/11	3	0	pr	ob	0	AL=1	15 Corrosion of household plumbing systems, erosion of natural deposits		
19. Nitrate (as Nitrogen)	N	2011	.16	No Range	bt	om	10		10 Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits		
	Disinfection By Products										
82. TTHM [Total trihalomethanes]	N	2008*	1.09	No Range	ppb	(0	80	By-product of drinking water chlorination.		
Chlorine	N	2011	1	1 1.1	ppm		0 MDI	RL = 4	Water additive used to control microbes		

^{*} Most recent sample. No sample required for 2011.

As you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some constituents have been detected however the EPA has determined that your water IS SAFE at these levels.

We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our Water Association is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing. Please contact 601.576.7582 if you wish to have your water tested.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline 1-800-426-4791.

*****A MESSAGE FROM MSDH CONCERNING RADIOLOGICAL SAMPLING*****

In accordance with the Radionuclides Rule, all community public water suppliers were required to sample quarterly for radionuclides beginning January 2007 – December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health Radiological health laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice. Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. This is to notify you that as of this date, your water system has not completed the monitoring requirements. The Bureau of Public Water Supply has taken action to ensure that your water system be returned to compliance by March 31, 2013. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601.576.7518.

The Town of Meadville works around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

Proof of Publication

STATE OF MISSISSIPPI FRANKLIN COUNTY

COPY OF NOTICE

Before me, the undersigned authority in and for the
County and State aforesaid, this day personally appeared
Marsha & OKEDO
who being duly sworn, states on onth that he is the Pub-
lisher of the Franklin Advocate, a weekly newspaper pub-
lished in the town of Mendville, Franklin County, Miss-
issippi, with a general circulation in said County, and
that the publication of the notice, a copy of which is here-
to attached, has been made in suid newspaper
times at weekly intervals in the regular entire issue of
said newspaper for the consecutive numbers and dates
thereof hereinafter named to-wit:
Vol. 125 No. 40 on the 1912 day of Suly 20 12
Vol. No. on the day of20
VolNoon thedoy of20
VolNoon theday of20
Vol No on the day of 20
Affiant further states on oath that the sald newspaper
has been established for twelve months next prior the
first publication of said notice.
Maraha X. Will Publisher
Sworn to and subscribed before me this the 244.

6/69

My Commission Expires January 4, 2016

My Commission Expires January

e©pt. (1995) 1995 (1995) 1995 (1995) 1995 (1995) 1995 (1995) 1995 (1995) 1995 (1995) 1995 (1995) 1995 (1995) 1

emintal or income there is

erti o i i se seperapidado y a giste

2011 Annual Drinking Water Quality Report Town of Meadville PWS#: 0190003 June 2012

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Miocène Series Aquifer.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identified potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the Town of Meadville have received a moderate susceptibility ranking to contamination.

If you have any questions about this report or concerning your water utility, please contact Marjorie Brown at 601.754.6753. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the first Tuesday of each month at 6.30 PM at the City Hall.

We routinely monitor for constituents in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that were detected during the period of January 1st to December 31st, 2011. In cases where monitoring wasn't required in 2011, the table reflects the most recent results. As water travels over the surface of land or underground; it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity, microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or faming, pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is sale to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily indicate that the water poses a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The *Goal*(MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000

				TEST RESU	LTS			6 17 1		
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure ment	MCLG	MCL	Hikely Source	e of Contamina	ition

100

10. Barium	N	2011	.025	No Range	ppm (2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
13. Chromium	N	2011	1.26	No Range	ppb	100	100	Discharge from steel and pulp mills; erosion of natural deposits
14. Copper	N.	2009/11	.8	0	ppm	stī3 Gir	AL=1.3	Corrosion of household plumbing, systems, erosion of natural deposits, leaching from wood preservatives
17: Lead	N	2009/11	3	0	ррь	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
19. Nitrate (as Nitrogen)	N	2011		No Range	mqq ht inat tall	10 1 I foug	14,, 1	Runoff from fertilizer use; teaching from septic tanks; sewage; eroston of naturally 311 deposits 00,0042 to; 200111

Disinfection By Products

88			
	82. TTHM N	2008* 1.09	No Range ppb 0 80 By-product of drinking water
	⊓otal +		chlorination.
	(rihalomethanes)		The state of the s
	Chlorine N	2011 1	1 = 1.1 ppm 0 TMDRL = 4 Water additive used to control
			microbes

^{*} Most recent sample. No sample required for 2011.

As you can see by the table, our system had no violations. We're proud that your drinking water meets of exceeds all Federal and State requirements. We have learned through our monitoring and testing that some constituents have been detected however the EPA has determined that your water IS SAFE at these levels.

We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our Water Association is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing. Please contact 601.576.7582 if you wish to have your water tested.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791;

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen, the risk of infection by cryptospondium and other microbiological contaminants are available from the Safe Drinking Water Hotline 1-800-426-4791.

*****A MESSAGE FROM MSDH CONCERNING RADIOLOGICAL SAMPLING*****

In accordance with the Radionuclides Rule, all community public water suppliers were required to sample quarterly for radionuclides* beginning January 2007 — December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health Radiological health laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice. Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. This is to notify you that as of this date, your water system has not completed the monitoring requirements. The Bureau of Public Water Supply has taken action to ensure that your water system be returned to compliance by March 31, 2013. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601.576.7518.

The Town of Meadville works around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future. to man between